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Experimental observations of the ionic coordinates in single crystals of tetragonal
barium titanate, together with theoretical estimates of the ionic charges, are taken
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2 J. H. Calderwood

as the starting point of a classical analysis of an electrostatic model of the crystal in
which each ion is represented by a point charge carrying a point dipole; this dipole
represents that arising from the electronic polarizability of the ion of the crystal. The
positions occupied by the ions are such that their charges cause ionic polarization of
the unit cells of the crystal. The charges also cause an electric field to exist at each ion;
its calculation is based upon the Lorentz formula for internal field, but with a crucial
difference in the manner of its application from the manner in which it previously
has been applied. The ion exhibits electronic polarization caused not only by the
field acting on it due to ionic charges, but also by that due to the electronic dipoles
created at all other ions; the electronic polarization process is consequently highly
interactive. These considerations lead to the derivation of an equation which must
be satisfied if the spontaneous polarization is to be predicted; a similar procedure
leads to another independent equation for the prediction of the refractive index. The
electronic polarizabilities of the ions are constituents of each of these equations, and
the insertion into them of literature values for the electronic polarizabilities of the
barium and titanium ions permits the evaluation of the electronic polarizabilities of
the oxygen ions in their two different crystallographic positions. The fields acting at,
and the electrostatic forces acting on, each ion are then calculated.

1. Introduction

Barium titanate, one of the perovskite ferroelectrics, can exist in several crystallo-
graphic forms. Above a transition temperature of about 120 ◦C it is cubic, although
for the very pure material, a temperature of 130 ◦C has been proposed (Johnson
1965). There is a barium ion at each corner, an oxygen ion in the centre of each face,
and a titanium ion in the centre of each unit cube (figure 1a), so that the chemical
formula of the material is BaTiO3. On cooling through the transition temperature
the material becomes ferroelectric; those edges of the cube conventionally designated
as being in the x and y directions slightly contract by an equal amount, while those
conventionally designated as being in the z direction elongate so that they are about
1% longer than the other edges. The structure has thus become tetragonal and re-
mains so until the next transition temperature of about 5 ◦C is reached, below which
the structure becomes orthorhombic. This paper is entirely concerned with the be-
haviour of single crystals of the material in its tetragonal form.

In the absence of an applied field, considerations of symmetry show that the cu-
bic crystal would not exhibit any polarization. The change from cubic to tetragonal
structure is accompanied by some displacement of the ions relative to each other
(figure 1b). With regard to the barium ions, the titanium ions (positive) are dis-
placed in the +z direction, while the oxygen ions (negative) are displaced in the −z
direction. In the tetragonal form the crystal therefore exhibits a polarization in the
+z direction. Since this exists without the presence of an externally applied electric
field, it is termed a spontaneous polarization; its reported experimental values for
single crystals are in reasonable agreement (Merz 1953; Wemple et al. 1968). The
value adopted for this analysis will be the same as that adopted by Sommer et al.
(1990), namely 0.261 C m−2 (SI units will be used throughout this paper).

The model used will only take account of ionic displacements in the z direction.
Although other possibilities have been discussed from time to time, such as the time-
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Figure 1. The unit cell of the barium titanate crystal. The ions Ba, Ti, Oa, Ob(i), Ob(ii) are
represented by the figures 1, 2, 3, 4, 5 respectively. The cubic form is shown in (a), where
a = 3.992× 10−10 m. The tetragonal form is shown in (b), where c = 1.01a; the ionic displace-
ments are given in table 1.

dependent displacements of an ion in each of the four [111] directions, so that its
displacement in the z direction becomes a resolved component of its time-dependent
displacement, such refinements will not be introduced into the analysis. The objec-
tive is to find out what can be predicted by the use of a simple classical static model,
each ion being considered as a point charge carrying a point dipole, representing the
real ion of the crystal which has a charge and also has a dipole resulting from the
displacement of its electron cloud relative to its nucleus. The electronic polarizabili-
ties of the ions will be taken to be constants, independent of the field acting on them.
This model is similar to that adopted by Hagedorn (1952), but his treatment did not
give a satisfactory prediction of the magnitude of the spontaneous polarization.

Although the treatment to follow relates to the tetragonal structure, the expression
derived by Lorentz (1952) for the field created by an infinite array of point dipoles
which form a cubic lattice will be used (the reference is to a reprint of the book
originally published in 1909). This will introduce some error, but in view of other
uncertainties involved in the calculation, it was felt that, following earlier practice,
for the purpose of the application of the Lorentz expression to the BaTiO3 tetragonal
structure, it could reasonably be regarded as a small deformation of the cubic phase.

The nominal charge on each barium, titanium, and oxygen ion is +2e, +4e and
−2e respectively, where e is the magnitude of the charge on the electron. However,
theoretical studies by Cohen & Krakauer (1990) have shown that while the figure of
+2e for the barium ion is likely to be about right, there is in effect a considerable
donation of electrons to the titanium ion from each oxygen ion, so that their charges
are about +2.89e and −1.63e respectively. These are the values for the ionic charges
adopted for this paper.

Referring to the cubic form shown in figure 1a, and taking the titanium ion as the
origin of conventional Cartesian axes, oxygen ions lying on the x, y, and z axes are
designated Ob(i), Ob(ii) and Oa respectively. Although they are in crystallographically
identical positions in the cubic phase, in the tetragonal phase brought about by ionic
movement in the z direction, the Oa ion is in a different crystallographic position
from that of the other two. The crystallographic positions of the latter still remain
indistinguishable from each other, but for the purpose of analysis it is expedient to
keep a distinction between them by retaining the designations Ob(i) and Ob(ii). For
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4 J. H. Calderwood

convenience, the subscript k will be used, having values of 1, 2, 3, 4, 5 to indicate
that quantities relate to the Ba, Ti, Oa, Ob(i), Ob(ii) ions respectively. Where the
quantities are consequent on the actions of other ions, the subscript j will be used
to indicate the causative ion; again, j runs from 1 to 5.

The analysis which follows makes use of the Lorentz formula for the internal field
at the lattice points, modified where necessary to give the field at other principal
points in the unit cell. Attempts to analyse the behaviour of single crystals of barium
titanate in the tetragonal phase which make use of these formulae have appeared
sporadically since about 1950, but as has been pointed out by Sommer et al. (1990),
experimental values of spontaneous polarization and refractive index so far have not
been predicted. As they remark, some have interpreted this failure as an indication
that the behaviour of the crystal can not be represented by that of a simple classical
model, because such models are physically unrealistic. However, it will be shown that
the use of such a model can indeed result in accurate predictions of both polarization
and refractive index when appropriate values for the electronic polarizabilities of the
ions are adopted.

The computations in this paper are based on experimental observations and on
the numerical results of theoretical analysis which generally may not be accurate
to more than three significant figures. However, once those values are adopted for
the setting up of the model, they are perfectly definite for the model, and so rather
more figures than three are carried through the calculations which follow. This is
so that the accuracy of the calculations for the model may not degrade during the
computational procedures involved. At the stage when the final results for the model
are applied to the real crystal, the additional figures may be discarded.

In what follows, polarization will be considered as arising from two causes, namely
from that of the relative positions of the ionic charges within the unit cell, and
from the dipoles created by the nuclear and electronic charges of the ions. It might
be desirable to name these polarizations after the entities which are polarized, so
that they would be called unit cell polarization and ionic polarization respectively.
However, in other papers dealing with topics similar to that dealt with here, it is more
usual to use the name of the entities causing the polarization, so that the terms ionic
polarization and electronic polarization have been widely used to designate these
two kinds of polarization respectively. In order to avoid confusion, the designations
adopted for this paper are in conformity with that usage.

The ionic polarization considered here is a result of the relative static positions
of the ions in the unit cell of the barium titanate crystal in its tetragonal form. It
is not a result of the application of a field from an external source, and is therefore
not the result of any ionic polarizability. That term would have to be introduced if
an external field capable of causing movement of the ions were to be applied to the
crystal. No such field is considered in this paper, which therefore is concerned with
ionic polarization, but not with ionic polarizability.

It is common to say that ionic polarization is caused by the displacement or move-
ment of ions from the positions they occupy in the cubic phase to those they occupy
in the tetragonal phase. It is not strictly correct to say so, because ionic polarization
is not caused by the displacement or movement of ions, but by their relative posi-
tions in the tetragonal crystal. The polarization caused by their charges would be
just the same even if the crystal had no phase other than tetragonal, so that the ions
would never have moved at all. Nevertheless, the displacement concept is so useful
as an aid to calculation that it is employed here, but a caution must be given that it
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Figure 2. A charge +q is shown at a lattice point in (a). It is displaced by a distance +∆z in
(b). Two charges of equal magnitude q but having opposite signs are placed at the lattice point
in (c). The displaced charge can thus be represented as a charge +q at the lattice point carrying
a dipole of moment +q∆z, as in (d).

encourages the tendency to endow the notional dipole associated with the concept
of displacement with a reality that it does not possess. Thus it might have played a
part in the acceptance as real of the illusory fields discussed in §3.

2. Calculation of the polarization caused by displacement of ionic
charges

Taking a point-charge model of an ideal single crystal in the cubic phase (figure 1a),
it is obvious from considerations of symmetry that in the absence of an applied field
the polarization is zero. An ion of such a crystal, say positive having a charge +q,
is shown in figure 2a. On transition to the tetragonal phase, it moves a distance
∆z as shown in figure 2b. Now suppose that at the lattice point which the ion
has vacated, a charge having the same sign and magnitude is notionally placed,
together with another charge which only differs from the first in being of opposite
sign (figure 2c); this notional operation has not caused any change in the resultant
charge distribution from that of figure 2b. The charge system of figure 2c is equivalent
to the system shown in figure 2d, where the original ion is back at its initial lattice
point, accompanied by a dipole having a moment µ of magnitude q∆z. The sum of
such dipole moments per unit volume caused by all of the species of ion in the crystal
gives the polarization Pq due to charge displacement.

From the foregoing, it is evident that the ionic dipole moment per unit cell, µq,
caused by ionic charge displacement, is given by

µq =
5∑
1

µqk =
5∑
1

qk∆zk. (2.1)

The absolute values of ∆zk in the room frame of reference are not known, as
experimentation only reveals the relative positions of the ions. It is conventional to
imagine that the barium ion remains fixed, i.e. that ∆z1 is zero, and to assign values
for ∆zk accordingly; these ∆zk values are then inserted into equation (2.1) to give
µq. However, if in fact the barium ion has moved a distance ζ, then the equation for
µq becomes

µq =
5∑
1

qk(∆zk + ζ), (2.2)
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6 J. H. Calderwood

=⇒ µq =
5∑
1

qk∆zk + ζ
5∑
1

qk. (2.3)

However, because the unit cell is electrically neutral

5∑
1

qk = 0 (2.4)

and so equation (2.1) remains valid for the dipole moment per unit cell caused by
the displacement of ionic charges no matter which ion is imagined to be fixed, or
more generally, whatever fixed frame of reference is chosen.

This point is of some importance because it serves to emphasize that, by virtue
of the relative displacements of its constituent ionic charges, it is only the unit cell
which possesses an ionic dipole moment and not the ions themselves. The individual
components of the summation on the right-hand side of equation (2.2) can have
any values, dependent on the arbitrary choice of the frame of reference in which the
individual ionic displacements are measured. However, the sum of these components
always remains the same.

Earlier calculations have often been based on the presumption that an ion in
a tetragonal crystal has a dipole moment consisting of two components, the first
arising from the displacement of its charge from the position that it occupied in the
cubic phase and the second from the distortion of its electron cloud, i.e. electronic
polarization, and that their sum, which is taken to be a definite quantity, gives the
total dipole moment of the ion; it is that total moment which has then been used
to determine the dipolar electric field due to the ion. That step is quite erroneous,
because although it is true that each ion does possess a definite dipole moment arising
from its electronic polarizability, no meaning relating to an individual ion can be
attached to the first component because ζ can have any value. The displacement
of the electronic cloud of an ion causes the ion to have electronic polarization, and
the displacement of ionic charges in a unit cell causes the unit cell to have ionic
polarization. However, the latter polarization can not be divided into components
attributable to the individual ions of the unit cell, for it arises from the displacements
of the ions relative to each other.

Nevertheless, the important formative papers on the subject usually do derive a
total polarizability for each ion made up of ionic and electronic components, and use
the resulting dipole moment as the basis for their field calculations. For example, in
his pioneering paper on the subject, Slater (1950), who considered the displacement
of only the Ti ion, postulates that an ion itself has both kinds of polarizability.
He introduces the notion of the ionic polarizability of ions, and in fact concludes
(p. 757, col. 2) ‘that the Ti ions contribute about 37% of the total polarization (of
which about 31% comes from ionic displacement, 6% from electronic polarization)’.
Later, in a related paper, Triebwasser (1957), who considered the displacements of
all the ions, also postulates the ionic polarization of the individual ions of BaTiO3,
on the basis that the barium ion is undisplaced, and he lists the ionic and electronic
polarizabilities of each ion in his table 1. However, he was aware of the objections
that could be levelled against this procedure. He points out that ‘we can anchor
some other point in the cell and arrive at different results’, but goes on to say in
justification that ‘observations . . . indicate that one can really say physically that the
Ba atoms are not strongly affected by the ferroelectric transition’. It will be shown
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Electrostatic model for crystals of barium titanate 7

Table 1. The charges qk (C) on the ions, taking account of electron donation from the oxygen
ions to the titanium ions, and their displacements ∆zk (m) relative to the barium ion

kth ion︷ ︸︸ ︷
quantity Ba Ti Oa Ob(i) Ob(ii)

qk × 1019 +3.2044 +4.6304 −2.6116 −2.6116 −2.6116
∆zk × 1010 0 +0.0544 −0.1008 −0.0617 −0.0617

that even if this statement were to be true, it would still not be justifiable to add
the real dipole moment due to electronic polarization to the notional dipole moment
due to ionic charge displacement to give a supposed real total dipole moment of an
ion.

However, it is quite permissible (q.v.) to anchor any point in the cell for the
calculation of the dipole moment per cell due to ionic charge displacement within it.
This dipole moment per unit cell µq can be calculated by means of equation (2.1),
using the ionic charge values provided by Cohen & Krakauer (1990) and the ionic
displacements, the barium ion taken to be fixed, given by Harada et al. (1970). These
are given in table 1. Substitution of these values in equation (2.1) gives

µq = 8.3741× 10−30. (2.5)

Now the polarization Pq caused by ionic charge displacement is given by

Pq = µq/a
3, (2.6)

where a is the length of the side of the unit cell, taken to be a cube. Taking a to be
3.9920× 10−10 from Rhodes (1951) gives

Pq = 0.13164. (2.7)

Thus ionic polarization accounts for about one-half of the experimental value of
polarization P , namely 0.261. The electronic polarization is expected to account for
the other half. To calculate that, it is necessary to know the field existing at each
ion.

3. Calculation of the fields at ions caused by ionic charge
displacement

(a ) Application of the generalized Lorentz formula
If we consider an indefinitely large cubic lattice having a unit cube with sides of

length a parallel to the x, y, z directions, and having at each lattice point L a point
dipole of moment µ in the +z direction, then the dipole moment per unit volume
is µ/a3. The material constituted by these dipoles therefore has a polarization P
in the +z direction given by µ/a3. It follows from the classical analysis of Lorentz
(1952) that the electric field at each dipole caused by all the other dipoles is in the
+z direction and is given by P/(3ε0), where ε0 is the permittivity of free space.

The Lorentz expression can be used directly to give the field created at a given ion
by the dipoles of the other ions of the same species in the single crystal of barium
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Table 2. The position of each ion in the cubic lattices of each of the other ions
(L, lattice point, C, cube centre, Fh, centre of horizontal face, Fv, centre of vertical face, Eh,
centre of horizontal edge, Ev, centre of vertical edge.)

ion︷ ︸︸ ︷
ref. lattice Ba Ti Oa Ob(i) Ob(ii)

Ba L C Fh Fv Fv

Ti C L Ev Eh Eh

Oa Fh Ev L Fv Fv

Ob(i) Fv Eh Fv L Fh

Ob(ii) Fv Eh Fv Fh L

titanate. However, to find the field caused at that ion by the dipoles of the ions of
a second species, it is necessary to establish the location occupied by the first ion in
the lattice of the second species. It is convenient to refer to the x and y directions as
horizontal and the z direction as vertical. Then the significant locations are the centre
C of the cube, the centre Fh of a horizontal face, the centre Fv of a vertical face,
the centre Eh of a horizontal edge, and the centre Ev of a vertical edge. Reference to
figure 1a facilitates the determination of which of these points are occupied by each
ionic species when each species in turn determines the reference lattice. The outcome
of this consideration is given in table 2; it shows the expected diagonal symmetry.

For a single cubic lattice having at each lattice point a dipole of moment µ in the
+z direction, the total field E in the +z direction at a point other than a lattice
point, and at a lattice point taking no account of the dipole at that lattice point, is
given by a generalization of the Lorentz expression,

E = {1/(3ε0) + S(x, y, z)}P, (3.1)

where the origin is at a lattice point.
The numerical value of S(x, y, z) for certain special points in the unit cube of a

single cubic lattice, including all of the points appearing in table 2, were evaluated
by Luttinger & Tisza (1946). There were some misprints in their table of values,
which were pointed out by McKeehan (1947); he himself had earlier (1933) published
related work in connection with magnetic crystals. The corrected values were used
by Slater (1950); they are also quoted in the book by Jona & Shirane (1962). The S
values given in those sources are quoted in non-rationalized Gaussian units, but they
have been transformed into SI units with dimension F−1 m for display in table 3,
where they are related to the points specified in table 2. The ratio of the field at
those points to that at the lattice point L is also shown in table 3. Inspection of
table 3 shows that the broad variation in field with position is in conformity with
our intuitive expectations.

(b ) Principle of the calculation
At first sight it might appear that to find the field at any ion due to ionic charge

displacements, all that would be necessary would be to find the component of field
caused by the displacement of each species of ion by using equation (3.1) with the
appropriate S value taken from table 3 chosen with reference to table 2, and then
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Electrostatic model for crystals of barium titanate 9

Table 3. The S factor (F−1 m) related to some special points (see table 2) in a cubic lattice for
the determination of the field E existing at them according to the generalized Lorentz expression
(equation (3.1)), and the ratio of E to the field EL at the lattice points

point︷ ︸︸ ︷
L C Fh Fv Eh Ev

S × 10−9 0 0 −77.904 +38.952 −135.172 +270.345
E/EL +1 +1 −1.069 +2.035 −2.591 +8.181

to sum the five results. There is, however, a difficulty. We need to know the value
of P for each of the five interpenetrating lattices in order to insert it in equation
(3.1). This means that we need to evaluate the dipole moment associated with the
displacement of each ionic charge. But we know from the argument of §2 that while
the sum of such dipole moments within the unit cell has meaning (see equations (2.3)
and (2.4)), no individual value for dipole moment due to its charge displacement can
be assigned to any ion, since ζ can be given any value we choose. While any value
of ζ would result in the same value for the dipole moment µq of the unit cell caused
by ionic charge displacement (q.v.), there is no corresponding identity of results for
different values of ζ in the case of the calculation of the field resulting from the
summation of the five E values derived from equation (3.1). The reason is that a
given change in ζ will change the fields at the special points by different amounts,
as is evident from the lower row in table 3. The fields at these points have different
comparative weightings in the determination of the total field at each ion, as can be
seen by inspection of the columns of table 2. The result obtained for the total field at
an ion owing to ionic charge displacement will therefore depend upon the choice of
the value of ζ. Up to now it has been the practice to take the barium ions to be fixed,
i.e. to take ζ to be equal to zero. There is however no reason to suppose that this
value is more appropriate than any other arbitrary value. Some further consideration
is required concerning the factors that should govern the choice of the value of ζ.

The consideration is helped by taking notice of what appears to be a curious
anomaly. Part of a cross-section in the yz plane through identical positive ions each
with charge +q arranged in an indefinitely large cubic lattice is shown in figure 3a.
It is obvious from considerations of symmetry that there is no electric field at, and
therefore no force acting on, any ion. Now following a procedure similar to that
illustrated in figure 2, the ions are all supposed to be displaced by a distance ∆z, as
shown in figure 3b. The positions of the ions relative to each other is unchanged, and
again there is no field at, or force on, any ion. Following the principle explained in
§2, the displaced ions can be represented by ions notionally restored to their original
positions, and the charge system of figure 3b is equivalent to that of figure 3c, in
which each charge +q is accompanied by a dipole of magnitude +q∆z. There thus
appears to be a field acting on each ion given by the Lorentz expression, and the
whole array therefore apparently accelerates away in the +z direction. That is a
proposition which would have astonished Newton, on account of his Third Law.

There is of course a flaw in the reasoning leading to that absurd conclusion. It is
evident even without recourse to Newton that the system of figure 3b is electrically
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z

(a) (b) (c)
∆z

Figure 3. A cubic lattice of positive ions of charge +q is shown in (a). It is displaced by a
distance +∆z in (b). In (c), the displaced ions are represented by ions at their original lattice
points, each carrying a dipole of moment +q∆z.

identical to that of figure 3a, and that the notional restoration of the ions to their
original positions can not conjure up fields and forces. This seems so obvious that
it might be thought that there is no need to labour the point, or even to mention
it. Yet the apparent fields at the lattice points shown in figure 3c have been taken
as real and included in the previously mentioned important formative papers in the
subject. For example, in the paper by Slater (1950), the field at the Ti ion has a
component which is attributed to the movement of the array of Ti ions (see his eqn
(31)), i.e. the field supposedly existing in figure 3c is taken as real. This mistaken
notion, subsequently taken up by other investigators, e.g. eqn (2) of Triebwasser
(1957), stems from the earlier misconception discussed in §2, namely that each ion
has its own real ionic dipole moment caused by its displacement. From there, the
next step is to attribute a real field to the presumed real dipole arising from the
displacement of each ion, and that leads to erroneous field calculations. Measured
ionic displacements are relative, and individual ionic displacement figures have no
meaning taken in isolation.

The resultant field Eqk at the kth ion due to ionic charge displacements is given
by the sum of the fields Eqjk caused by the displacements of species of ion having the
designation j. From the foregoing, it is clear that especial care has to be taken not to
include any illusory component Eqkk attributable to the displacement of ions of the
kth species. The exclusion of such components can be ensured by always choosing as
reference the lattice of the ion at which the field is being calculated. In that way, the
ion will be deemed to have no displacement, and therefore have no notional dipole
moment and set up no field arising from displacement; the only field it experiences
owing to ionic displacement arises from the displacement relative to itself of other
species of ions. This procedure implies that a given ion will have different values of
displacement depending upon at which ion the field is being calculated. That does
not matter, although the relative shifts of the different species of ion must remain
fixed, no matter which species of ion provides the reference lattice. The fields arising
from ionic displacement will now be calculated on that basis.

(c ) Results of the calculation
To illustrate the implementation of the proposed procedure, the example will be

given of the calculation of the field Eq32 at the Ti ions caused by the displacement
of the charges of the Oa ions. The steps are as follows.

(i) In order to take the Ti lattice as reference, 0.0544 × 10−10 is subtracted from
each of the values given in the last row of table 1. For the Oa ion, the displacement
becomes −0.1552× 10−10.
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(ii) To find the notional dipole moment µqk caused by the displacement of each
ionic charge, its displacement referred to the Ti lattice is multiplied by the charge,
given in the first row of table 1. For the Oa ion, µq3 = +4.0532× 10−30.

(iii) To find the notional polarization Pqk caused by the displacement of each ionic
charge, µqk is divided by a3. For the Oa ion, Pq3 = 0.0637.

(iv) The relevant special point is found from table 2. For the Ti ion in the Oa

lattice, it is Ev.
(v) The corresponding S value is found from table 3. For Ev it is +270.345× 109.
(vi) The values of Pqk and S are substituted in equation (3.1) to give the field Eq32

at the Ti ions caused by the displacement of the charge of the Oa ions. The result is
+19.623× 109.

This process is repeated to find the field at the Ti ions caused by the displacements
of the charges of the Ba, Ob(i) and Ob(ii) ions, and the four fields are added to give
the total field Eq2 at the Ti ion caused by ionic charge displacements. In the above
example, the dipole moment µq3 and the resulting polarization Pq3 caused by the
displacement of the Oa ion are both described as ‘notional’ because when the field
created at an ion other than the Ti ion by the displacement of the charge of the
Oa ion is considered, that displacement in the lattice of the other ion taken as the
frame of reference will be different, and so give rise to different values for µq3 and
Pq3. That is why these quantities can only be described as notional. Nevertheless, in
the particular case of the example above, the notional dipoles are caused by the true
displacement of the charges of the Oa ions relative to the Ti ions, and so the resulting
field Eq32 has a real, not a notional, magnitude. Thus, unlike the calculation for ionic
polarization discussed in §2 for which five components without individual meaning
sum to give a total with meaning, each of the four fields Eqjk which sum to give the
total field Eqk at each ion caused by ionic displacement has its own real individual
magnitude. It is therefore quite permissible to refer to, for example, the field created
at the Ti ions by the displacement relative to them of the charges of the Oa ions; it
is a real field with a definite magnitude, and it gives rise to an electrostatic force of
definite magnitude q2Eq32 on the charge of each Ti ion.

The whole procedure is then repeated to find the fields at the other ions result-
ing from the ionic charge displacements relative to them; the results are shown in
table 4a. For comparison, the results obtained using the conventional procedure in
which the barium lattice is taken as reference throughout the whole calculation, i.e.
the displacement values are fixed at those given in table 1, are shown in table 4b.
There are marked differences between the field values shown in tables 4a and 4b.

The electrostatic force experienced by each ion caused by the fields resulting from
ionic charge displacement is obtained by multiplying the fields in table 4a, and for
the sake of comparison in table 4b, by the appropriate ionic charges. The results are
shown in tables 5a and 5b. The difference between these tables is even more striking.
Table 5a, with its diagonal symmetry of quantities of opposite signs, shows clearly
that the forces predicted are in conformity with Newton’s Third Law, and that ionic
charge displacement causes zero electrostatic force on the unit cube. That is not so
for the quantities shown in table 5b. Summation of the forces in the bottom row
shows that a resultant force is predicted on the unit cube of +1.2822× 10−9, a force
quite comparable with that on the Ba or Ob ion.

It was to be expected that there would be a resultant force, because of the inclusion
of the illusory forces to which reference has already been made. However, if all these
are discounted by putting a zero in table 5b in all the places where a zero appears
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Table 4. The field Eqjk (V m−1) at each kth ion caused by the charges of all of the jth ions
(Field calculated according to (a) the displacements relative to the kth ion of all other ions and
(b) the displacements of all ions, including the kth ions, relative to that of the barium ion. These
fields total Eqk at each kth ion.)

(a)

field ×10−9 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba 0 −1.0316 −2.0440 +2.3806 +2.3806
Ti +1.4906 0 +34.7919 −8.2413 −8.2413
Oa −1.6659 +19.6230 0 +1.2295 +1.2295

Ob(i) +1.9402 −4.6482 −1.2295 0 0
Ob(ii) +1.9402 −4.6482 −1.2295 0 0
total +3.7051 +9.2950 +30.2889 −4.6312 −4.6312

(b)

field ×10−9 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba 0 0 0 0 0
Ti +1.4906 +1.4906 +12.1951 −3.8616 −3.8616
Oa −1.6659 +12.7448 +1.5578 +3.1697 +3.1697

Ob(i) +1.9402 −2.4702 +1.9402 +0.9536 −1.0197
Ob(ii) +1.9402 −2.4702 +1.9402 −1.0197 +0.9536
total +3.7051 +9.2950 +17.6333 −0.7580 −0.7580

in table 5a, the predicted resultant force due to ionic charge displacement would not
disappear, but would in fact increase to +1.4968 × 10−9. It is clear that there is a
defect in the conventional procedure in addition to the inclusion of the self-generated
illusory forces. A better understanding of the defects of the conventional procedure
is necessary; this will be pursued in §4.

4. Calculation of the electrostatic force between ions possessing
dipoles

(a ) Derivation of a compensation factor
Two ions of the model are shown in figure 4a. They have charges qj and qk and

electronic dipoles of moment µej and µek respectively; their horizontal separation is
r, and their vertical separation is z, taken as positive for the ion of the kth species
above that of the jth species. The dipole moments µej and µek will both be taken
to be positive, i.e. directed upwards, as indeed will be later shown to be the case for
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Table 5. The force Fqjk (N) on the charge of each kth ion caused by the charges of all of the
jth ions

(Force calculated according to (a) the displacements relative to the kth ions of all other ions
and (b) the displacements of all ions, including the kth ions, relative to that of the barium ion.
These forces total Fqk on each kth ion.)

(a)

force ×109 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba 0 −0.4777 +0.5338 −0.6217 −0.6217
Ti +0.4777 0 −9.0862 +2.1523 +2.1523
Oa −0.5338 +9.0862 0 −0.3211 −0.3211

Ob(i) +0.6217 −2.1523 +0.3211 0 0
Ob(ii) +0.6217 −2.1523 +0.3211 0 0
total +1.1873 +4.3039 −7.9102 +1.2095 +1.2095

(b)

force ×109 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba 0 0 0 0 0
Ti +0.4777 +0.6902 −3.1849 +1.0085 +1.0085
Oa −0.5338 +5.9014 −0.4068 −0.8278 −0.8278

Ob(i) +0.6217 −1.1438 −0.5067 −0.2490 +0.2663
Ob(ii) +0.6217 −1.1438 −0.5067 +0.2663 −0.2490
total +1.1873 +4.3040 −4.6051 +0.1980 +0.1980

the electronic dipoles of all of the ions of the model. The vertical component of the
electrostatic force exerted on the kth ion by the jth ion will now be calculated.

That force has four components, which are easily found by means of elementary
electrostatics to be given by the following expressions:

(i) Vertical force on qk caused by qj =
qjqkz

4πεo(z2 + r2)3/2 . (4.1)

(ii) Vertical force on qk caused by µej =
µejqk(2z2 − r2)
4πε0(z2 + r2)5/2 . (4.2)

(iii) Vertical force on µek caused by qj = − µekqj(2z2 − r2)
4πε0(z2 + r2)5/2 . (4.3)

(iv) Vertical force on µek caused by µej = −3µejµekz(2z2 − 3r2)
4πε0(z2 + r2)7/2 . (4.4)
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(a) (b)
µek

µqk

µej

µqj

qk qk

qj qj

z z

r r

∆zj+ζ

∆zk+ζ

Figure 4. Two single ions of the jth and kth species (a) with electronic dipoles. The vertical
component of the field caused by the dipole of the former is positive inside, and negative outside,
the cones represented by the dotted lines, and (b) with notional dipoles arising from ionic
displacement.

For the calculation of the fields and forces due to the charges of the ions, the fact
that they occupy the sites shown in figure 1b, rather than those of figure 1a, was
taken into account by the device of the introduction of notional dipoles, the ions
being restored to the tetragonal lattice points of figure 1b. Thereafter, the unit cell
was treated as a cube, and the position of the ions, with their notional and real
dipoles, was taken to be that shown in figure 1a. From then on, the restored ions
did not feature in the analysis. The force given by equation (4.1) is that caused on
one restored charge by another. We know from symmetry that if the fields caused
at the restored charge by all other restored charges were to be added, the result
must be zero, and so the force on the restored charge must be zero also. That is
indeed the prediction of equation (4.1), since in the vertical line through the ion of
the jth species shown, for every ion having a position designated by +zn, there will
be another having a position designated by −zn, and z is a multiplier of the right-
hand side of the equation. This argument may be applied to all ions of whatever
species situated on a vertical line, and so the total vertical force on the charge of the
restored ion of the kth species caused by the fields of the charges of all other ions is
analytically confirmed to be zero. Since z is also a multipler of the right-hand side of
equation (4.4), a similar argument holds, and the total vertical force on the dipole of
the ion of the kth species caused by the fields of the dipoles of all other ions of the
crystal is also zero. Although it has not been shown analytically here, it is evident
from symmetry that there is also no component of force in any horizontal direction
on any ion.

Coming now to the force given by equation (4.2), it is evident that the total vertical
force on qk caused by the fields of the dipoles of all other ions will not be zero. If we
imagine two cones, one of them being inverted, having the same vertical axis, with
semi-vertical angle arctan

√
2 (about 55◦), each with its apex at the ion of the jth

species, then from elementary electrostatics the vertical component of the field of
µej is positive at all points inside those cones, and negative everywhere else, except
on the surface of the cones where it is zero. Hence the vertical field at the charge qk
caused by the field of µej is in the +z direction if 2z2 > r2 and in the −z direction if
2z2 < r2, i.e. the vertical field changes direction when z is ±r/√2, as is also evident
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from equation (4.2). The vertical fields Eejk at qk caused by the dipoles of all of the
jth species of ion may be found by the use of the method already described in §3
which employs the generalized formula of Lorentz. This method will be used in §5
to give the total field Eek, i.e. that field at the ions of the kth species caused by the
electronic polarization of all other ions, which when added to the field Eqk gives the
total field Ek responsible for the electronic polarization of ions of the kth species.

There remains the force given by equation (4.3). It arises from the fact that the
charge qj creates a different field at each of the dipolar charges of the ion of the
kth species being considered, and so there is a net force on its dipole. Combining
this force with that given by equation (4.2) gives the vertical force F caused by the
dipole and charge of the single ion of the jth species acting on the charge and dipole
respectively of the single ion of the kth species shown in figure 4a to be

F =
2z2 − r2

4πε0(z2 + r2)5/2 (µejqk − µekqj). (4.5)

Here the term in µejqk gives the force on qk caused by the field of µej at the
lattice point occupied by qk, while that in µekqj is the net force on the charges of
the dipole µek caused by the field of qj at those charges. The existence of both of
these forces is obvious when only two ions are involved; however, when the ions are
arrayed in an indefinitely extended lattice, the second term is easily overlooked. That
is because it arises from the forces on the charges of the dipoles, which are rarely
explicitly considered. There is a tendency to imagine that the force on an ion is
simply the product of the charge on that ion and the field existing at the lattice
point at which both the point charge and point dipole of the ion are situated. That
field from symmetry is vertical, and it might seem at first that the forces on the
charges of the point dipole, which is vertically aligned and of extremely short length,
cancel each other. Then only the first term of equation (4.5) would be taken into
account. That term might appropriately be called the apparent force Fapp; it may
be defined as that component of the electrostatic force on an ion caused by the field
of the dipoles of other ions acting on its charge.

Since the apparent force Fapp may be readily calculated, it is expedient to rewrite
equation (4.5) as

F =
µejqk(2z2 − r2)
4πε0(z2 + r2)5/2

[
1− µekqj

µejqk

]
, (4.6)

or

F = FappC. (4.7)

Here C is a compensation factor by which the apparent force Fapp must be multi-
plied to give the true force F . It only applies if the two dipole moments are directed
along coincident or parallel lines, Fapp and F being the force components resolved
in their direction.

The compensation factor C was derived by a consideration of only two ions, their
relative positions being determined by the quantities z and r. However, these quan-
tities do not appear in the expression for C derived from equation (4.6), so that the
compensation factor C is the same whatever their values, and can be written Cejk
to indicate that it can be used in the calculation of the net force caused by any jth
ion on any kth ion due to the action of µej on qk and of qj on µek. From equations
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(4.6) and (4.7) we have

Cejk = 1− µekqj
µejqk

. (4.8)

It follows that in the summation process to find the force Fejk on any ion of the
kth species given by the sum of the forces caused by (i) the sum Eejk of the fields of
the dipoles of all the jth ions acting on the charge of the kth ion and (ii) the sum
of the fields of the charges of all the jth ions acting on the charges of the dipoles of
the kth ion, it is only necessary to calculate the former forces, using the generalized
Lorentz formula. The result can then be multiplied by Cejk to obtain the sum Fejk
of the forces in categories (i) and (ii) above. This procedure is then repeated for j
taking all values from 1 to 5, including the value of k, using the appropriate value for
Cejk in each case; the results are summed to give Fek. The reason for the inclusion
of the j = k value is to ensure that the value of Eekk is recorded; it is evident from
equation (4.8) that when j = k, Cekk = 0 so that for ions of the same species the net
force Fekk due to dipole–charge and charge–dipole interaction is given analytically
as zero; however, the field Eekk is not zero. The final step is to add the force Fqk
due to the field of the displaced ionic charges acting on qk, which has already been
calculated in §3 c and is presented in table 4a, to find the total electrostatic force Fk
on each of the ions of the kth species.

The force Fejk is given by the product CejkEejkqk. It is convenient to consider
CejkEejk to be a notional force-field Ecejk which is imagined to act on the charge
qk to give directly the force Fejk acting on the kth ions, so that Fejk can be written
simply as Ecejkqk. It must be emphasized that the field Ecejk has no real existence.
The force Fejk is actually caused by three different fields acting on three charges, i.e.
on qk and on those of the dipole µek. The total notional force-field Ecek, which also
has no real existence, imagined to act on qk to give the real force Fek, is obtained by
summing the values of Ecejk.

Thus the total electrostatic field Ek acting at the lattice point occupied by the
kth ion is given by

Ek = Eqk + Eek. (4.9)
It is the field Ek which causes electronic polarization of the kth ion, so that the
dipole moment µk of each ion of that species is given by

µek = Ekαk, (4.10)

where αk is the electronic polarizability of the kth ion.
The total electrostatic force Fk on the kth ion is given by

Fk = qk(Eqk + Ecek). (4.11)

For an indefinitely large cubic lattice of ions having identical charges and dipoles
all oriented in the +z direction, C is zero from equation (4.8), so that Ecek is zero.
Since Eqk is zero from symmetry, Fk is zero from equation (4.11). Thus the lattice of
figure 3c, which in §3 b was denied locomotion on the grounds that no field existed at
its lattice points since it was only a lattice of charges which had been displaced and
restored, would still be denied self-propulsion even if it were to be furnished with
real dipoles which do create a field at the lattice points. The compensation factor
rightly predicts that this real field produces zero force on each ion, the physical
reason being that the force on the charge of each ion is equal and opposite to the
force on its dipole. Thus the electrostatic analysis agrees with Newton, as it must.
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To revert to the model, the vertical force caused by the single ion of the kth species
on that of the jth species shown in figure 4a is given by interchanging the subscripts
in equation (4.5), which gives the result of −F ; this is in accordance with Newton’s
Third Law. That is so for any pair of ions, and so it follows that in each unit cell of
the crystal, the electrostatic forces on the charges and dipoles caused by electronic
polarization of all of the ions of the crystal add to zero. The electrostatic forces on
the charges of each of the ions of a unit cell caused by the charges of all of the ions
of the crystal also add to zero, as was shown in §3. The total electrostatic force on
the ions of each unit cell is therefore zero. However, the total electrostatic force on
an individual ion, given by equation (4.11), is in general not zero.

Since the ions are all in equilibrium, it follows that each ion must be subjected
to another force, equal and opposite to the electrostatic force given by equation
(4.11). This balancing force is in fact made up from several other forces in the real
crystal which have been discussed by Fowler & Pyper (1985). Since the sum of the
electrostatic forces over all of the ions of each unit cell is zero, then so must be the
sum of the balancing forces. Their origin is not incorporated in the model, which is
based upon the premise that the ions are in equilibrium in known positions in the
tetragonal crystal. The ab initio calculation of the balancing forces calls for the use
of the machinery of modern theoretical physics, and is quite outside the scope of the
classical point-charge/point-dipole model being analysed here.

(b ) Application of the compensation factor to ionic charge displacement
The fields arising from the displacement of ionic charges from their positions in

the cubic structure to those in the tetragonal structure were calculated in §3 using
the device of notional dipoles. The reference frame was moveable, and was always
chosen as the lattice of the ion at which the field was being calculated, in order to
avoid the inclusion of illusory fields and forces. The consequence of choosing a fixed
frame of reference, that of the barium ion, was examined numerically, and the results
relating to fields and forces are shown in table 4b and table 5b respectively.

The consequence of choosing a fixed frame of reference will now be examined
analytically. We shall start by considering only two ions of the model, and shall find
the field at, and the force on, the charge of a single kth ion caused by the charge of
a single jth ion. In figure 4b the dipoles shown are notional, of length (∆zj + ζ) and
(∆zk + ζ) determined by the ionic charge displacements, whereas in §4 a the dipoles
were real, and determined by electronic polarization. The dipole moment µqk of the
notional dipole of the kth ion is given by qk(∆zk+ζ), where ∆zk is the displacement
of the kth ion relative to the barium ion, and ζ is an arbitrary length; analogous
quantities relate to the jth ion, ζ being unchanged.

Elementary electrostatics shows that:

Vertical field at qk caused by µqj =
qj

4πε0
2z2 − r2

(z2 + r2)5/2 (∆zj + ζ). (4.12)

This clearly has no unique value as ζ can have any value.
The notional apparent vertical force Fapp on the single kth ion is given by the above

expression multiplied by qk, and for the same reason, that has no unique value.
From equation (4.8),

Cqjk = 1− ∆zk + ζ

∆zj + ζ
. (4.13)
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Substituting the above values into equation (4.7) to find the notional vertical force
F on the single kth ion gives

F =
qjqk
4πε0

2z2 − r2

(z2 + r2)5/2 (∆zj −∆zk). (4.14)

The two striking features of this equation are that the term ζ has vanished, and
that only the difference in ionic displacements appears. The first means that F has
a definite value, the same for all values of ζ, and therefore is real not notional. The
second means that the frame of reference is fixed by the location of the kth ion on
which the force is being calculated. The kth ion therefore has no notional dipole,
and the effect of that (see §3 c) is that the true force F , rather than an apparant
force Fapp, results. When the right-hand side of equation (4.12) is multiplied by qk
to give Fapp and compared with the expression for F given by equation (4.14), it is
at once evident that the effect of the introduction of the compensation factor Cqjk
has been to put ζ = −∆zk. This ensures that the kth ion is undisplaced, and so
the compensation factor has made certain that the kth ion determines the frame of
reference; the calculation then proceeds in the same way as the initial calculation
using a moveable frame of reference. Therefore when the force Fqk caused by the
charges of all other ions on the charges of the kth ions is found by summation, using
the appropriate compensation factors, the results to emerge should be the values
shown in table 5a. This will now be shown to be so.

The figures given in table 5b relate to the case when the barium ion provides the
fixed frame of reference throughout, i.e. ζ = 0. They were obtained by multiplying
the field created by the notional dipoles of a given species of ion, at the lattice points
of all species of ion, by the charges of those ions. The resulting force is therefore the
apparent force, and to find the true force it must be multiplied by the appropriate
compensation factor. That is a simple matter, because when ζ is zero, the dipole
moment µqk associated with each charge qk is given by qk∆zk. The compensation
factor Cqjk for the calculation of the force-field created by the jth ions on the kth
ions is given by equation (4.13) which therefore becomes

Cqjk = 1− ∆zk
∆zj

. (4.15)

Values for Cqjk obtained by the use throughout of the ∆z values given in table 1
are shown in table 6 (the figure when both j and k refer to Ba is indeterminate).
When the figures in a given position in table 5b are multiplied by the Cqjk values
in the corresponding positions of table 6, the figures of table 5a do indeed result.
The use of the compensation factor has thus ensured the correct result for the forces
between the charges of ions of all species, and not just the prediction of zero force
between the charges of ions of the same species, which is but a particular case.

These figures give the force Fqjk on the charge qk of the kth ions caused by the
fields Eqjk at the kth ions of the charge qj of the jth ions. The fields Eqjk can
therefore be found by dividing Fqjk given in table 5a by the appropriate charge qk
given in table 1. The values so obtained are the figures of table 4a, which had already
been found (see §3) by the method of using a moveable frame of reference.

Thus we see that that method, and the method using a fixed frame of reference
together with the compensation factor Cqjk, give identical results for the fields at,
and the forces acting on, the charges of each ion caused by the charges of other ions.
To find these fields and forces, the former method is the easier and the more direct.
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Table 6. Compensation factors Cqjk calculated from equation (4.15)
(When the figures of tables 4b and 5b are multiplied by the appropriate Cqjk factor, the figures
of tables 4a and 5a result.)

kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba — ±∞ ±∞ ±∞ ±∞
Ti +1 0 +2.8529 +2.1342 +2.1342
Oa +1 +1.5397 0 +0.3879 +0.3879

Ob(i) +1 +1.8817 −0.6337 0 0
Ob(ii) +1 +1.8817 −0.6337 0 0

However, it is not an option when we come to consider not notional dipoles, but real
dipoles which can not be reduced to zero for the convenience of calculation.

5. Calculation of the fields at ions caused by electronic polarization

The field at an ion caused by the electronic polarization of all other ions will
be determined by means of the Lorentz expression, modified as necessary to take
account of the position of the ion at which the field is being calculated in the lattices
of the other ions. The calculation will follow the same procedure as that employed for
the calculation of the fields Eqk set up by the notional dipoles existing because the
charges of the displaced ions in the tetragonal phase had been notionally restored to
the lattice points they occupy when the crystal is in the cubic phase. We shall again
treat the crystal as being cubic, and shall take it that the real dipoles µek caused by
electronic polarization have been restored to the lattice points as constituent parts
of the restored ions.

Since the dipole moment µej associated with the electronic cloud of the jth ion is
given by αjEj , the resulting component Pej of electronic polarization is given by

Pej = αjEj/a
3, (5.1)

where Ej is the total electrostatic field, caused by both ionic charges and electronic
polarization, appearing at the lattice points occupied by the model ions of the jth
species. Hence the field Eejk at the lattice points occupied by the model ions of
the kth species created by the array of dipoles µej is given by the substitution of
the appropriate values of Sjk and Pej in equation (3.1). It follows that the total
electrostatic field Ek at those lattice points occupied by ions of the kth species is
given by

Ek = Eqk +
5∑
j=1

Eejk. (5.2)

It should be noticed that j takes all values between 1 and 5 inclusive in this equation,
including that for which j = k.

Substitution of appropriate values in equation (5.2) gives five simultaneous equa-
tions for the total electrostatic fields at the ions, E1, E2, E3, E4, E5. Values for Eqk
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have already been calculated in §3, but for the calculation of the fields Ek it is neces-
sary to know the magnitudes of the electronic polarizabilities αk. These magnitudes
are not known with certainty, and so they will be carried as symbols throughout the
calculation. In order to avoid many repetitions of the factor 10−40, we shall write

Ak ≡ αk × 1040, Mk ≡ µek × 1040. (5.3)

The decision to carry Ak symbolically means that the right-hand side of equations
derived from equation (5.2) will contain, in all terms except the first, products AkEk,
and so they are conveniently written in terms of Mk. The left-hand side of those
equations can also conveniently be written in terms of Mk, since Ek is given by
Mk/Ak. The five simultaneous equations can then be solved forMk, and so solutions
for Ek can be obtained in terms of A1, A2, A3, A4, A5.

Implementation of the above procedure yields the following five simultaneous equa-
tions relating the quantities Ak and Mk (the coefficients in these equations, and
others to follow, in general are not pure numbers):

M1/A1 = +3.7051× 109 + 0.05918M1 + 0.05918M2

−0.06328M3 + 0.12041M4 + 0.12041M5, (5.4)

M2/A2 = +9.2950× 109 + 0.05918M1 + 0.05918M2

+0.48414M3 − 0.15330M4 − 0.15330M5, (5.5)

M3/A3 = +30.2889× 109 − 0.06328M1 + 0.48414M2

+0.05918M3 + 0.12041M4 + 0.12041M5, (5.6)

M4/A4 = −4.6312× 109 + 0.12041M1 − 0.15330M2

+0.12041M3 + 0.05918M4 − 0.06328M5, (5.7)

M5/A5 = −4.6312× 109 + 0.12041M1 − 0.15330M2

+0.12041M3 − 0.06328M4 + 0.05918M5. (5.8)

The fact that the Ob(i) and Ob(ii) ions are in the same crystallographic positions means
that they have fields of identical magnitude acting on them, and so will have not
only identical polarizabilities, but also equal dipole moments. Therefore A5 andM5
can be replaced by A4 andM4 respectively in the above equations. Nevertheless, the
Ob(i) and Ob(ii) ions occupy separate cubic lattices, and so each array creates a field
at its own lattice points which is different from that it creates at the lattice points of
the other, as is evident from the last two terms in equations (5.7) and (5.8). Making
the suggested simplification, the four resulting equations may now be solved so that
the electronic dipole moment of each ion is given in terms of the polarizabilities of
all of the ions; thus Mk = fk(A1,A2,A3,A4). (5.9)
Since Mk = AkEk, (5.10)
where Ek is the total electrostatic field at the kth ion, it follows that we have directly

Ek = (1/Ak)fk(A1,A2,A3,A4). (5.11)

Proceeding in that way, after some algebra we find

E1 = K−1(+3.70510 + 0.33077A2 − 2.13596A3 − 1.10009A4 − 0.19154A2A3

−0.36590A2A4 + 0.89866A3A4 − 0.09156A2A3A4)× 109, (5.12)
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E2 = K−1(+9.29500− 0.33077A1 + 14.11419A3 + 1.45804A4 − 1.11241A1A3

−0.55771A1A4 − 1.95382A3A4 − 0.03896A1A3A4)× 109, (5.13)

E3 = K−1(+30.28891− 2.02697A1 + 2.70755A2 − 0.99097A4 − 0.18109A1A2

−0.64258A1A4 − 1.00222A2A4 + 0.04353A1A2A4)× 109, (5.14)

E4 = K−1(−4.63108 + 0.72019A1 − 1.15083A2 + 3.92119A3 + 0.09054A1A2

−0.49893A1A3 − 0.76836A2A3 + 0.04353A1A2A3)× 109, (5.15)

where

K = (+1.00000− 0.05918A1 − 0.05918A2 − 0.05918A3 + 0.00410A4

−0.00050A1A3 − 0.02924A1A4 − 0.23089A2A3 − 0.04724A2A4

−0.02924A3A4 + 0.01774A1A2A3 + 0.00887A1A2A4

+0.00710A1A3A4 + 0.03930A2A3A4). (5.16)

The field E5 is equal to the field E4.

6. Relationship between electronic polarizabilities and electronic
polarization

We now wish to derive the contribution Pek to the electronic polarization Pe made
by each species of ion. This is related to dipole moment as follows:

Pek = µek/a
3. (6.1)

On substituting the appropriate value for a, this gives

Pek = 1.5719× 10−12AkEk. (6.2)

Substitution of the expressions for Ek given in equations (5.12) to (5.15) into equation
(6.2) gives

Pe1 = K−1(+5.82409A1 + 0.51994A1A2 − 3.35754A1A3 − 1.72925A1A4

−0.30108A1A2A3 − 0.57516A1A2A4 + 1.41262A1A3A4

−0.14392A1A2A3A4)× 10−3, (6.3)

Pe2 = K−1(+14.61093A2 − 0.51994A1A2 + 22.18627A2A3 + 2.29191A2A4

−1.74861A1A2A3 − 0.87667A1A2A4 − 3.07123A2A3A4

−0.06124A1A2A3A4)× 10−3, (6.4)

Pe3 = K−1(+47.61152A3 − 3.18622A1A3 + 4.25603A2A3 − 1.55772A3A4

−0.28466A1A2A3 − 1.01008A1A3A4 − 1.57540A2A3A4

+0.06843A1A2A3A4)× 10−3, (6.5)

Pe4 = K−1(−7.27965A4 + 1.13208A1A4 − 1.80900A2A4 + 6.16377A3A4

+0.14232A1A2A4 − 0.78427A1A3A4 − 1.20779A2A3A4

+0.06843A1A2A3A4)× 10−3. (6.6)

These can be summed to find Pe, but an additional expression for Pe5, identical
to that for Pe4, must be added to represent the contribution of the electronic polar-
ization of the Ob(ii) ion. When that is done, we arrive at the following expression for
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Pe:

Pe = K−1(+5.82409A1 + 14.61093A2 + 47.61152A3 − 14.55930A4

−6.54376A1A3 + 0.53491A1A4 + 26.44230A2A3 − 1.32609A2A4

+10.76982A3A4 − 2.33435A1A2A3 − 1.16719A1A2A4

−1.16600A1A3A4 − 7.06221A2A3A4)× 10−3. (6.7)

It will be noticed that not all of the Ak product terms are present, for example
the A1A2A3A4 term. That is because their coefficients are either negligible or zero.

It was shown in §2 that the polarization Pq caused by the displacement of ionic
charges is 0.13164. In order for our model to predict the experimental result of a
polarization P of 0.261, it is therefore required that Pe should be 0.12936. If that
value is inserted into equation (6.7) then it may be rearranged to give

+0.10420A1 + 0.17213A2 + 0.42723A3 − 0.11665A4 − 0.05009A1A3

+0.03338A1A4 + 0.43530A2A3 + 0.03699A2A4 + 0.11249A3A4

−0.03579A1A2A3 − 0.01789A1A2A4 − 0.01611A1A3A4 − 0.09389A2A3A4 = +1.

(6.8)

If the values of A1, A2, A3, A4 are such that this equation is satisfied, then the
experimental value of P is predicted; thus equation (6.8) stipulates the first condition
to be satisfied by the electronic polarizabilities of the ions. It is possible to find rea-
sonable values for these polarizabilities that do satisfy the equation, but there are an
indefinitely large number of sets of values which would do so, and the fact that some
of them are in accordance with reasonable expectations is hardly a satisfactory check
on the predictive powers of the model. In the following section a further constraint is
introduced by the derivation of an equation which must be satisfied concerning the
relationship of the electronic susceptibility χe and the polarizability factors Ak.

7. Relationship between electronic polarizabilities and refractive
index

We shall consider a ray of light travelling transversally across the crystal, plane
polarized so that its electric field of instantaneous value Er is in the z direction,
i.e. the vertically polarized ray. To be in the visible spectrum, its frequency must be
between about 4 × 1014 and 8 × 1014. The nuclei of the ions are too massive to be
affected significantly by an electric field of such a high frequency, but their electron
clouds are able to respond to it. The result is that a high frequency polarization of
instantaneous value Pr is set up, given by

Pr = ε0Erχe, (7.1)

where χe is the electronic susceptibility of the material for fields in the z direction.
This susceptibility is linked to the corresponding relative permittivity εr of the

material at optical frequencies by the relationship

χe = εr − 1. (7.2)

The refractive index relating to the ray of light being considered is usually denoted
by the symbol nc. Since the square of the refractive index nc also gives εr, we have

Pr = ε0Er(n2
c − 1). (7.3)
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The value of the polarization Pr resulting from the response of the electron clouds
to an applied field Er will now be calculated in terms of the polarizability factors
Ak. It will then be related to the value of the appropriate refractive index, so that
another equation corresponding to equation (6.8) can be formulated which has to be
satisfied by A1, A2, A3, A4.

(a ) Derivation of expressions for the fields at ions caused by a high-frequency
applied field

Since the applied field Er caused by the vertically polarized ray does not change
the positions of the ionic charges, it does not change the fields caused by them.
Provided that the optical frequency is much less than that of the resonant frequency
of the electron cloud, its movement is in phase with Er, and at any instant the field
created by the electronic polarization is the same as if the field Er did not vary with
time.

We can therefore find the field at every ion by using equations (5.4) to (5.8)
inclusive, but with the term Er added to the right-hand side of each. The first
term on the right-hand side of each is the same, because the ionic displacements are
unchanged. The coefficients of theMk terms are also unchanged, but the Er values,
and so the Mk values, are changed by the presence of Er and by the change in the
field at each ion caused by the change in the electronic dipole moments of all the
ions.

The new set of five simultaneous equations can be reduced to four by replacing
A5 and M5 by A4 and M4 respectively, and can be solved in the same way as were
the first set to give new values of Ek in terms of A1, A2, A3, A4. The previous
expressions for Ek, given in equations (5.12)–(5.15) can now be subtracted from the
new expressions in order to give expressions in terms of Ak of the components of
the new Ek values which are attributable to the presence of Er. These and related
dipole moments and polarizations will be designated by the additional suffix r, as a
reminder that they are due to the presence of the ray.

Proceeding as described above, after some algebra we have

E1r = K−1(+1.00000− 0.12246A3 + 0.24492A4 − 0.23263A2A3

−0.11632A2A4 − 0.02999A3A4)Er, (7.4)

E2r = K−1(+1.00000 + 0.42497A3 − 0.30250A4 − 0.06704A1A3

−0.03352A1A4 + 0.07056A3A4)Er, (7.5)

E3r = K−1(+1.00000− 0.12246A1 + 0.42496A2 + 0.24492A4

−0.02999A1A4 − 0.24486A2A4)Er, (7.6)

E4r = K−1(+1.00000 + 0.06123A1 − 0.21248A2 + 0.06123A3

−0.02999A1A3 − 0.24487A2A3)Er, (7.7)

where K is given by equation (5.16).
The field E5r is equal to the field E4r.

(b ) Relationship between electronic polarizabilities and electronic susceptibility
Now applying the relationship of equation (7.1), we have

χe =
1

ε0Er

5∑
1

Pkr =
1

ε0Er

5∑
1

µekr

a3 =
0.17753
Er

5∑
1

AkEkr. (7.8)
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Multiplying each equation for Ekr by the factor Ak, and summing the results,
including a term identical to that yielded by equation (7.7) to account for the con-
tribution of the Ob(ii) ion, from equation (7.8) we obtain

χe = 0.17753K−1(A1 +A2 +A3 + 2A4 − 0.24492A1A3 + 0.36738A1A4

+0.84994A2A3 − 0.72746A2A4 + 0.36738A3A4 − 0.29967A1A2A3

−0.14984A1A2A4 − 0.11996A1A3A4 − 0.66402A2A3A4). (7.9)

(c ) Derivation of electronic susceptibility from observations of refractive index
The value of χe to be inserted in equation (7.9) should be derived from experiments

to measure the refractive index related to the vertically polarized ray at frequencies
so high that the ions are not disturbed, but not so high that observations are in the
electronic dipole resonance region. Experimental results were obtained by Johnston
(1971) using the vertically polarized ray in single crystals of barium titanate relating
to the variation of refractive index for free-space wavelengths λ in the range of about
0.46–0.66 µm. Over this range the measured refractive index nc drops continuously
from about 2.49 to about 2.36, the graph having the typical shape of the skirt of a
resonance curve.

Because nc is changing with wavelength, there are some complications. Energy
losses are occurring, and the polarization is not in phase with the applied field. It
is necessary to establish values for nc relating to lower frequencies, well clear of the
resonance region, and to use the value to which the experimental curve tends as λ
becomes indefinitely large. This can be done by the analytical extrapolation of the
experimental curve in the visible region; it could not be done at very low frequencies
by experiment because the electric field of the ray would cause movement of the ions.

When the centroid of a spherical electron cloud of uniform density is separated
from that of the nucleus of an atom or ion, its polarizability does not vary with ap-
plied field and there is a restoring force created on the separated charges proportional
to the displacement z. It follows that when a sinusoidal electric field is applied, then
except for frequencies very close to resonance, z is given by

z =
β

ω2
0 − ω2 sinωt, (7.10)

where β is a constant with dimensions m s−2, ω0 is the angular frequency at reso-
nance, and ω is the angular frequency of the applied field. Therefore the resulting
dipole moment and so polarization are given by expressions of the same form, but
with different constants. Hence from equation (7.10) we have

χe =
γ

ω2
0 − ω2 , (7.11)

where γ is a constant with dimensions s−2. Equation (7.11) may be rewritten

1
n2
c − 1

= ξ

[
1
λ2

0
− 1
λ2

]
, (7.12)

where λ0 is the free-space wavelength at angular frequency ω0, and ξ is a constant
with dimensions m2.

Thus if a graph of 1/(n2
c − 1) against 1/λ2 is plotted taking values of nc and λ

from the experimental curve of Johnston (1971), a straight line is expected. That
has been done, and the result is shown in figure 5.
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Figure 5. Graph of 1/(n2
c − 1) against 1/λ2, where nc is the refractive index of the vertically

polarized ray in BaTiO3, and λ is its free-space wavelength in micrometres, derived from the
results of Johnston (1971).

The coordinates of the points have been derived by taking λ and nc values from
Johnston’s curve. It is seen that they do indeed lie on a good straight line. It is well
fitted by the equation

1
n2
c − 1

=
1

1.9

[
0.4614− 0.02

λ2

]
. (7.13)

Here, following Johnston, λ is expressed in micrometres.
As λ grows indefinitely large, i.e. ω tends to zero, equation (7.13) gives a value of

nc of 2.2623, and so εr and χe have values 5.1179 and 4.1179 respectively. This χe
value will be used for equation (7.9).

Equation (7.13) also shows that λ0 is 0.2082 µm, corresponding to a frequency of
1.44× 1015. This is in the ultraviolet region, where it would be expected to be. It is
possible that due to the spring-like nature of the restoring force, transient radiation
of wavelength λ0 might be detectable when the crystal structure charges from cubic
to tetragonal.

Equation (7.13) can be rewritten to show the direct dependence of nc on λ to give

nc =
[

118.07λ2 − 1
23.07λ2 − 1

]1/2

, (7.14)
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again with λ expressed in micrometres. This equation gives an extremely close fit to
Johnston’s curve over his entire experimental range.

On insertion of the value of 4.1179 for χe in equation (7.9), it may be rearranged
to give

+0.10229A1 + 0.10229A2 + 0.10229A3 + 0.08212A4 − 0.01006A1A3

+0.04508A1A4 + 0.26753A2A3 + 0.01588A2A4 + 0.04508A3A4 − 0.03066A1A2A3

−0.01533A1A2A4 − 0.01227A1A3A4 − 0.06793A2A3A4 = +1. (7.15)

If the values of A1, A2, A3, A4 are such that this equation is satisfied, then the
value of χe derived from refractive index measurements relating to the vertically
polarized ray is predicted. Thus equation (7.15) stipulates the second condition to
be satisfied by the electronic polarizabilities of the ions.

(d ) Effect of the finite wavelength of experimental observations
One further point concerning this calculation should be mentioned. Taking a typ-

ical wavelength near the middle of the visible spectrum, say 0.58 µm, the refractive
index for the vertically polarized ray given by Johnston is 2.39. The wavelength of
the ray in the crystal is therefore about 0.242 µm, which is 608 times the length a
of the edge of the unit cube. Therefore at a given instant the electric field produced
by the ray, although constant along any line in the z direction, changes sign over a
distance of about 300a in its direction of travel. The Lorentz expression used in the
calculation applies for dipoles having the same moment at a given instant over the
whole of a cubic lattice of indefinitely large extension in all directions, which implies
that the applied field at a given instant should be the same at every lattice point.
The question is whether the variation just mentioned casts serious doubts on the
validity of the calculation of χe.

Such doubts might be assuaged by recalling that the experimental data from the
visible spectrum were only used to provide information, by analytical extrapolation,
of what data might be expected from notional extremely low frequency measure-
ments carried out with the ions locked in position. At those frequencies, the wave-
length would be indefinitely long and the question of the unwelcome variation of
fields would therefore not arise. It is true that that variation in field was present
during the real experiments in the visible spectrum from which the results of the
notional low frequency measurements were deduced. Nevertheless, over the range of
the real experiments the wavelength increases by over 40%, and the results as plotted
in figure 5 still show the expected straight line, an expectation based only on consid-
erations of resonance. It follows that if an effect caused by field variation is present,
then the change to the measured refractive index resulting from it must have such a
wavelength dependence that a straight line still results. In that case, the effect of the
variation is included in the analytical extrapolation, and will have become negligible
at the long wavelength corresponding to the low frequency extrapolated value used
for the calculation of χe.

8. Effect of induced charges on the measuring electrodes

The effect of the application of an externally applied field Er was analysed in §7,
in the context of the transmission of a vertically polarized ray through the material.
There is another way in which an external field can be applied which should now
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be considered. The spontaneous polarization is measured by the placing of plane
electrodes on the upper and lower surfaces of a specimen of the material in the form
of a disc of thickness t. These electrodes, in the xy plane, each have a free charge
density induced on them by virtue of the spontaneous polarization P of the material,
and it is this free charge which is measured to give the value of P .

At first sight it might appear that the free charge on the electrodes would give rise
to a uniform field Ef in the +z direction in the material, the effect of which would
have to be taken into account by the solution of a set of five simultaneous equations,
following a procedure similar to that adopted in §7. In this case, Er would be replaced
by Ef , where Ef is given by P/ε0. Furthermore, the ions would be expected to move
under the influence of Ef , and the consequences of their relative movement would
have to be taken into account.

However, further consideration shows that the adoption of the above procedure
would be erroneous. It is true that for any xy plane across the material, avoiding
the singularities of charges, the integrated value of the z component of electric flux
per unit area is P , and that this also holds at the planes of the electrodes. However,
this flux is not of uniform density, and so neither is the density of the corresponding
free charges on the electrodes. Those charges are distributed over the surface in such
a way that image charges of the ions of the specimen are set up by the electrodes,
which act in the usual manner as mirrors of electric charge.

The consequence is that in an image space of thickness t above and below the
electrodes, there are image charges with opposite signs to those in the material.
The displacements of these reversed-sign ions is in the opposite direction to those
of the real ions, which means that the notional dipoles created by the restoration of
the image ionic charges have the same magnitude and direction as those created by
the restoration of the real ionic charges. Further consideration shows that the real
dipoles caused by electronic polarization also give rise to image dipoles having the
same magnitude and direction in the image space as they have in the real material.
Because all of the restored ions are in horizontal planes equidistant from each other,
the pattern of the positions of the ions, and so the pattern of the positions of the
notional and real dipoles associated with them, is identical in the real and image
spaces.

The image zones of thickness t adjacent to each electrode are in turn reflected in
the electrode further from them, to give second image zones in which the sign of the
ionic charges, the directions of their displacements, and the signs and shifts of the
electron clouds are the same as those in the real material. In the third image zones,
the picture is the same as that in the first image zones. It follows that through
an indefinite number of multiple reflections, the notional and real dipole pattern
effectively remains the same ad infinitum in the positive and negative z directions.

Thus the electrodes, instead of introducing a new complication to be taken into
account, in fact effectively extend the material indefinitely in the positive and neg-
ative z directions and so help towards the establishment of the conditions necessary
for the valid use of the Lorentz formula, which strictly only applies to a system of
indefinitely large extension.

There is a caveat that should be mentioned concerning the above argument. In
the calculation given in §2 of the polarization Pq caused by the displacement of ionic
charges, the effect of the displacement of each ion was represented by a notional
dipole, consequent upon the restoration of the ion to its original lattice point. Because
of the crystal symmetry, each restored ion experiences no resultant field from ions of
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its own or any other species, and so the ionic charges themselves did not feature in the
calculation from then on, but only the notional dipoles to which their displacement
gives rise. However, in the system of the real material and its images discussed above,
while the charges on ions restored to the lattice points have the same signs in the even
numbered image zones as they have in the real material, they have the opposite signs
in the odd numbered image zones. Thus it would be not strictly true to say that the
restored ions have no influence on each other, or that the electrodes effectively extend
the material in exactly the same way as if the real material were to be extended.

However, it is reasonable to suppose that the difference will not be serious. For
a typical specimen, say 4 mm thick, there will be about 107 unit cells along a line
perpendicular to the electrodes, with a net charge of zero in each unit cell. Both in
the real material and in its images, the great majority of the restored ions of a given
species will be in an enviroment in which those ions all carry charges of the same
sign. It is only very near the electrode surfaces and their images that the difference
in the sign of such charges on each side of the boundary might possibly be of some
significance notwithstanding the fact that the total charge in each unit cell is still zero
on each side of the boundary. Although the ionic charge extension of the material
is therefore not quite seamless, the essential fact is that the dipole patterns of both
notional dipoles arising from ionic charge displacement, and of real dipoles arising
from electron cloud displacement, are continuous indefinitely through the material
and its multiple reflections, and it is on those dipole patterns that the analysis is
based.

9. Calculation of the electronic polarizabilities of ions

The analysis so far has provided two equations, equation (6.8) and equation (7.15),
which must be satisfied by the electronic polarizabilities αk of the ions if experimental
observations of spontaneous polarization and refractive index are to be predicted.
These constraints are evidently not enough to enable the values of the four unknown
quantities, A1, A2, A3, A4, to be determined.

However, the in-crystal polarizability of barium ions and other constituent ions
of ionic solids has been derived by Fowler & Pyper (1985) by a method based on
experimental refractive index measurements and the use of a polynomial connect-
ing polarizability and ionic separation, which was taken to be a measure of the
environmental constraint on the ion within the crystal. Their best estimate of the
polarizability of the barium ion is 10.1 a.u., which is the equivalent in SI units of
1.6653× 10−40 F m2. Although there is a degree of covalent bonding in the BaTiO3
crystal, following Cohen & Krakauer (1990), the barium ion was taken to have its
full ionic charge of +2e. A value for A1 of 1.6653 will therefore be adopted in the
calculations to follow.

(a ) Calculation incorporating an existing value for the polarizability of the Ba ion,
with the presumption of identical polarizabilities for the Oa and Ob ions

Again following Cohen & Krakauer (1990), the present analysis has taken the
charge on each oxygen ion to be −1.63e. This implies that the Oa and Ob ions
each donate an equal charge of −0.37e to the titanium ion, despite their different
crystallographic positions. If the polarizabilities of the Oa and Ob ions were also to
be independent of crystallographic position, then each could be represented by A3.
Although there is no reason to suppose that the polarizabilities of the Oa and Ob
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ions are equal, and the implication of their environments is that they probably are
not, in order to obtain some rough idea of the fields and forces acting on the ions, the
equality of the polarizabilities of the Oa and Ob ions will be provisionally presumed.
Thus the polarizability of all of the oxygen ions will be represented by A3, and since
a reliable literature value exists for A1, the only two unknowns are A2 and A3. Their
values can therefore be found by the solution of equation (6.8) and equation (7.15).

This calculation takes as its starting point the figure of 1.6653 × 10−40 for the
in-crystal polarizability of the barium ion (Fowler & Pyper 1985), and takes the
polarizability of both kinds of oxygen ion to be the same. The starting point therefore
is A1 = 1.6653 and A4 = A3. Making these substitutions, after some rearrangement
equation (6.8) becomes

+0.17213A2+0.28276A3+0.38290A2A3−0.09389A2A2
3+0.08566A2

3 = 0.82648 (9.1)

and equation (7.15) becomes

+ 0.10229A2 + 0.24273A3 + 0.20682A2A3 − 0.06793A2A2
3 + 0.02465A2

3 = 0.82966.
(9.2)

Using equation (9.1) and equation (9.2), A2 may be expressed explicitly in terms
of A3 as follows:

A2 = {1.71480A3(1− 0.97838A3)− 10.41431}(1 + 3.15577A3)−1. (9.3)

Substituting this expression for A2 into equation (9.1) gives the following equation
for A3:

+A4
3 − 3.38432A3

3 + 14.75145A2
3 − 38.20473A3 − 16.62740 = 0. (9.4)

This equation for A3 has four roots, two of them being complex and the other two
being real; of the real roots, one is positive and the other negative. Only the positive
real root is admissable, giving a value for A3 of +3.12336. Substitution of this value
into equation (9.3) gives a value for A2 of −1.97347. Being negative, that is not
admissable. The conclusion is that equation (6.8) and equation (7.15), which must
be satisfied if the correct values of spontaneous polarization and of refractive index
are to be predicted, can not both be satisfied if the polarizability of the Ba ion has
the value adopted and if the Oa and Ob ions are postulated to have the same value
of polarizability, no matter what is the value of the polarizability of the Ti ion. The
present model, incorporating the trustworthy figure for A1, therefore rules out the
possibility of the equality of A3 and A4.

(b ) Calculation incorporating existing values for the polarizabilities of the Ba ion
and the Ti ion

A possibility exists for the evaluation of A3 and A4 by making use of a reliably
computed value of 1.482 a.u., equivalent to 0.24435 × 10−40 F m2, for the polariz-
ability of the titanium ion. This value, due to Johnson et al. (1983), is the result
of a computation based on a relativistic generalization of the coupled Hartree–Fock
theory. The computation relates to an isolated ion having a charge of +4e, i.e. pos-
sessing 18 electrons, whereas this paper is concerned with an ion in a crystal having
a charge of +2.89e, i.e. effectively possessing 19.11 electrons; both the magnitude
of their charges, and probably more significantly the environment of these ions, are
different. Nevertheless, it would be interesting to see what prediction would be made
concerning the polarizability of the Oa and Ob ions if the figure of 0.24435 for A2
were to be adopted. The necessary calculation follows.
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Table 7. The electronic polarizabilities α3 and α4 (F m2) of the oxygen ions Oa and Ob and their
ratio, predicted for some presumed values of the electronic polarizability α2 of the titanium ion

α2 × 1040 0.2000 0.2250 0.2443 0.2750 0.3000

α3 × 1040 1.5288 1.5185 1.5105 1.4988 1.4882
α4 × 1040 3.5560 3.5617 3.5666 3.5591 3.5796
α4/α3 2.3260 2.3455 2.3612 2.3747 2.4053

The starting point for this calculation therefore is A1 = 1.6653 and A2 = 0.24435.
Making these substitutions, after some rearrangement equation (6.8) becomes

0.43563A3 − 0.05930A4 + 0.06272A3A4 = 0.78441 (9.5)

and equation (7.15) becomes

0.13843A3 + 0.15483A4 + 0.00805A3A4 = 0.80467. (9.6)

Using equation (9.5) and equation (9.6), A4 may be expressed explicitly in terms
of A3 as follows:

A4 = 4.33397− 0.50805A3. (9.7)
Substituting this expression for A4 into equation (9.5) gives the following equation

for A3:
A2

3 − 23.14722A3 + 32.68217 = 0. (9.8)
The roots of this equation are +21.63672 and +1.51050. When these values for

A3 are substituted into equation (9.7) the values for A4 are given as −6.65857 and
+3.56656 respectively. Since the negative value for A4 is not admissable, the only
acceptable solution is

A3 = 1.5105, A4 = 3.5666.
This gives the ratio of the polarizability of the Ob ion to that of the Oa ion as being
2.3612.

Since there is some doubt about the validity, for the purposes of that calculation, of
the value used for the polarizability of the titanium ion, it would be well to assess the
sensitivity of the values obtained for A3 and A4 to that used for A2. The calculation
above was therefore repeated for some other values of A2 over the range 0.2–0.3; this
range extends over about ±20% of the A2 value of 0.24435 already adopted.

The admissable results are shown in table 7. When the value adopted for A2 is
reduced by about 18% to 0.2, the A3 value rises by about 1.2%, the A4 value falls by
about 0.3%, and the A4/A3 ratio falls by about 1.5%. When the adopted A2 value is
increased by about 23% to 0.3, the A3 value falls by about 1.5%, the A4 value rises
by about 0.36%, and the A4/A3 ratio rises by about 1.9%. The changes in A3 and
A4 are seen to be quite small compared to the changes in A2, the variation being not
far from linear over the range considered. Throughout that range the variation in
the predicted values of A3 and A4 from their values resulting from the adopted value
for A2 are not significant, and A4 remains between about 2.3 and 2.4 times larger
than A3. It therefore seems that even if the true figure for the polarizability of the
titanium ion in the crystal were not to agree very closely with the adopted figure,
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the results obtained for the in-crystal polarizabilities of the oxygen ions would not
be seriously affected.

However, it is quite possible that the true A2 value might differ from the adopted
value of 0.24435 by significantly more than 20%. The state of the titanium ion in the
crystal, taken in this paper to have a charge of 2.89e, might resemble somewhat that
of the free Ti+3 ion. Although the polarizability of that ion is not known, it would
be expected to be greater than that of the Ti+4 ion, perhaps by as much as a factor
of three. It is therefore worthwhile to calculate how such a large departure from the
adopted value would affect the predicted polarizabilities of the Oa and Ob ions.

That calculation has been carried out, with the A1 value taken to be 1.6653 as
before, but with the A2 value increased by just over a factor of three to 0.7500. The
results for A3 and A4 are 1.3240 and 3.6874 respectively. Compared with their value
when A2 was taken to be 0.2443, A3 is 12.34% lower and A4 is 3.39% higher. These
changes, while not negligible, are very much less than the threefold increase in A2
necessary to bring them about. This means that for the adoption of any reasonable
polarizability within a wide range of values for the titanium ion, the predicted values
for the polarizabilities of the Oa and Ob ions, particularly the latter, are confined
within relatively narrow bounds.

10. Specification of the crystal

Taking the literature figures for the electronic polarizabilities of the barium and
titanium ions adopted in §9 b, and the calculated values for the polarizabilities of
the two species of oxygen ion which follow from them, we have a set of Ak values
which satisfy equation (6.8) and equation (7.15), so ensuring that the experimental
values of spontaneous polarization and refractive index are predicted by the model.
The set of Ak values are:

A1 = 1.6653, A2 = 0.2444, A3 = 1.5105, A4 = A5 = 3.5666.

Having adopted the electronic polarizability values above, it is now possible to
draw up a table showing the quantities dealt with in this paper pertaining to the sin-
gle crystal of barium titanate. These appear in table 8, SI units being used through-
out. All figures relate to the model, and so are given to four places of decimals; when
these are translated to the real crystal, in general no more than three significant
figures are justified. Occasionally, a total may differ in its last figure from the sum
of its components because more decimal places were carried than are shown. An ex-
planation follows of how the table was drawn up, with some comments; the numbers
in the text correspond to those of the rows in the table.

1. Ionic charge values qk taking account of electron sharing between the titanium
and oxygen ions (see §1).

2. Ionic charge displacements ∆zk from the cubic lattice positions when the crystal
becomes tetragonal. These displacements are relative to the position of the barium
ion, and so only their differences have meaning (see §2).

3. These figures for µqk, the product of those in rows 1 and 2, have no individual
significance, but their sum has, and it gives µq, the dipole moment per unit cell due to
the relative positions of the charges of its constituent ions. That sum, 8.3741×10−30,
when divided by the volume of the cell, gives the ionic charge polarization Pq to be
of value 0.1316 (see §2).
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Table 8. Results (SI units) of the analysis of the electrostatic model for a single crystal of
barium titanate

kth ion︷ ︸︸ ︷
quantity jth ion Ba Ti Oa Ob(i) Ob(ii)

1 qk × 1019 +3.2044 +4.6304 −2.6116 −2.6116 −2.6116
2 ∆zk × 1010 0 +0.0544 −0.1008 −0.0617 −0.0617
3 µqk × 1030 0 +2.5189 +2.6325 +1.6114 +1.6114
4 Eqk × 10−9 +3.7051 +9.2950 +30.2889 −4.6312 −4.6312
5 αk × 1040 +1.6653 +0.2444 +1.5105 +3.5666 +3.5666
6 Ek × 10−9 +1.9636 +37.1058 +39.2623 +1.4921 +1.4921
7 Eek × 10−9 −1.7415 +27.8108 +8.9734 +6.1233 +6.1233
8 µek × 1030 +0.3270 +0.9067 +5.9306 +0.5322 +0.5322

Ba +0.1935 +0.1935 −0.2069 +0.3937 +0.3937
Ti +0.5366 +0.5366 +4.3896 −1.3900 −1.3900

9 Eejk × 10−9


Oa −3.7529 +28.7121 +3.5096 +7.1408 +7.1408

Ob(i) +0.6408 −0.8158 +0.6408 +0.3149 −0.3368
Ob(ii) +0.6408 −0.8158 +0.6408 −0.3368 +0.3149

10 Eek × 10−9 −1.7413 +27.8105 +8.9738 +6.1228 +6.1228
Ba 0 −0.9189 +23.2537 +2.9969 +2.9969
Ti +0.4789 0 +12.5973 +2.0406 +2.0406

11 Cejk


Oa +1.0449 +1.0862 0 +0.9103 +0.9103

Ob(i) +1.5008 +1.9610 −10.1444 0 0
Ob(ii) +1.5008 +1.9610 −10.1444 0 0
Ba 0 −0.1778 −4.8117 +1.1799 +1.1799
Ti +0.2569 0 +55.2965 −2.8364 −2.8364

12 Ecejk × 10−9


Oa −3.9216 +31.1879 0 +6.5001 +6.5001

Ob(i) +0.9617 −1.5998 −6.5001 0 0
Ob(ii) +0.9617 −1.5998 −6.5001 0 0

13 Ecek × 10−9 −1.7413 +27.8106 +37.4847 +4.8436 +4.8436
Ba 0 −0.0823 +1.2566 −0.3082 −0.3082
Ti +0.0823 0 −14.4413 +0.7408 +0.7408

14 Fejk × 109


Oa −1.2566 +14.4413 0 −1.6976 −1.6976

Ob(i) +0.3082 −0.7408 +1.6976 0 0
Ob(ii) +0.3082 −0.7408 +1.6976 0 0

15 Fek × 109 −0.5579 +12.8774 −9.7895 −1.2650 −1.2650
16 Fqk × 109 +1.1873 +4.3039 −7.9102 +1.2095 +1.2095
17 Fk × 109 +0.6294 +17.1813 −17.6997 −0.0555 −0.0555

4. The field Eqk at each ionic charge caused by ionic charge displacements, having
the Eqjk components shown in table 4a (see §3).

5. The set of electronic polarizabilities αk of the ions (see §9) which gives the
required predictions of 0.1294 for electronic polarization Pe and of 4.1179 for the

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Electrostatic model for crystals of barium titanate 33

low frequency electronic susceptibility χe for fields in the z direction (see §6 and §7
respectively).

6. The total electric field Ek at each ion, found by substitution of the values of
row 5 in equations (5.12) to (5.16).

7. The field Eek at each ion caused by all the electronic dipoles, found by subtrac-
tion of the figures of row 4 from those of row 6.

8. The electronic dipole moment µek of each ion, given by the product of the
figures of rows 5 and 6. These sum to give an electronic dipole moment per unit cell
of 8.2287× 10−30, corresponding to an electronic polarization Pe of 0.1294.

9. The fields Eejk at the kth ions caused by the electronic dipoles of the jth ions,
calculated by the use of the generalized Lorentz expression of equation (3.1) with
tables 2 and 3.

10. The total field Eek at the kth ions caused by the electronic dipoles of all the
ions, obtained by the additions of the columns of rows 9; these figures should agree
with those of row 7, and they do so to at least four significant figures.

11. The compensation factors Cejk derived from equation (4.8), from which it is
evident that (Cejk − 1)(Cekj − 1) = 1. This relationship is satisfied within rounding
errors by the figures given.

12. The values for Ecejk, the notional force-field caused by the electronic dipoles
of the jth ions at each kth ion, given by the product of the corresponding figures of
rows 9 and 11.

13. The total notional force-field Ecek caused by the electronic dipoles of all ions
at each kth ion, obtained by the summation of the components Ecejk of the notional
force-fields shown in the columns of rows 12.

14. The electrostatic force Fejk on each kth ion is the sum of the forces caused by
the electronic dipole field Eejk of the dipoles of all of the jth ions acting on qk and
the force caused by all of the charges qj of the jth ions acting on the dipole µek of
the kth ion. Fejk is given by the product of the corresponding figures of rows 1 and
12. The diagonal symmetry showing equal and opposite forces illustrates how the
compensation factor has ensured that the calculated forces are in accordance with
Newton’s Third Law.

15. The total electrostatic force Fek due to the sum of all of the electronic dipole
fields acting on the charge qk of any kth ion, and due to all of the ionic charges acting
on the electronic dipole µek of any kth ion. Fek is obtained by the summation of the
components Fejk of the forces shown in the columns of rows 14. The figures in row
15 sum to zero, and so satisfy Newton’s Third Law.

16. The electrostatic force Fqk on each kth ion due to the field caused by ionic
charge displacement, given by the products of the figures in rows 1 and 4 (see table 5a
for components). The figures in row 16 sum to zero, and so satisfy Newton’s Third
Law.

17. The total electrostatic force Fk on any kth ion, given by the sum of the forces
due to the fields arising from ionic charge displacement and from electronic polariza-
tion. Again, the figures in this row should and do sum to zero. Since the total force
on each ion must be zero, the electrostatic force Fk on each ion must be counter-
balanced by an equal and opposite balancing force not derivable independently by
means of the model. Since the forces they counterbalance sum to zero in a unit cell,
so must the balancing forces.

When tables 4a and 5a supplement table 8 to show the components of Eqk and
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Table 9. The total field Ejk (V m−1) at each kth ion caused by the charges and dipoles of all of
the jth ions

(These fields sum to Ek at the kth ion.)

field ×10−9 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba +0.1935 −0.8381 −2.2509 +2.7743 +2.7743
Ti +2.0272 +0.5366 +39.1815 −9.6313 −9.6313
Oa −5.4188 +48.3351 +3.5096 +8.3703 +8.3703

Ob(i) +2.5810 −5.4640 −0.5887 +0.3149 −0.3368
Ob(ii) +2.5810 −5.4640 −0.5887 −0.3368 +0.3149
total +1.9639 +37.1056 +39.2628 +1.4914 +1.4914

Table 10. The total force Fjk (N) on each kth ion caused by the charges and dipoles of all of
the jth ions

(These forces sum to Fk on the kth ion.)

force ×109 kth ion︷ ︸︸ ︷
jth ion Ba Ti Oa Ob(i) Ob(ii)

Ba 0 −0.5600 +1.7904 −0.9299 −0.9299
Ti +0.5600 0 −23.5275 +2.8931 +2.8931
Oa −1.7904 +23.5275 0 −2.0187 −2.0187

Ob(i) +0.9299 −2.8931 +2.0187 0 0
Ob(ii) +0.9299 −2.8931 +2.0187 0 0
total +0.6294 +17.1813 −17.6997 −0.0555 −0.0555

Fqk given in rows 4 and 16 respectively, the calculated data concerning the model
are complete. However, it is interesting to be able to see directly the electrostatic
effect of all of the ions of a given species on any ion of each species. This has been
done for fields and forces in table 9 and table 10 respectively.

The fields at each of the kth ions caused by the charges and dipoles of all of the
jth ions are shown in table 9. These figures are the sum of the Eqjk values shown in
table 4a and the Eejk values given in rows 9 of table 8. Each column of table 9 sums
to give the result within rounding errors for Ek shown in row 6 of table 8.

The sum of the electrostatic forces on the charges and dipoles of any kth ion caused
by the charges and dipoles of all of the jth ions, i.e. the electrostatic force caused to
act on any ion by each species of ion, is shown in table 10. These figures are the sum
of the Fqjk values shown in table 5a and the Fejk values given in rows 14 of table 8.
Each column of table 10 sums to give the result for Fk shown in row 17 of table 8.
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11. Conclusions

(a ) Limitations of the model
The ions of the crystal are represented in the model by arrays of point charges

carrying point dipoles. They occupy a vanishingly small volume, whereas the ions
have very significant volumes. It is at once evident that the model can tell us nothing
directly about the interior of the real ions. However, if their time-averaged charge
distribution is such that each ion sets up outside its own volume a quasi-steady
field the same as that which would be set up if its own charges were replaced by
an appropriate point-charge/point-dipole placed at the position of its nucleus, then
the model can simulate the fields set up by the ions outside themselves, i.e. roughly,
outside the volume bounded by their six nearest neighbours.

Since the point dipoles of the model are postulated to have dipole moments pro-
portional to the field acting on them, the electronic polarizabilities of the ions of the
crystal must not vary significantly with field if the simulation is to be satisfactory.
If the crystal ions were to be thought of in a classical way, consisting of a positive
point charge surrounded by a cloud of negative charge, then elementary electrostat-
ics indicates that for the ion to have a constant electronic polarizability, the charge
cloud must exhibit spherical symmetry, with the further requirement that inside the
very small sphere with its centre at the centre of the field-displaced charge cloud,
and radius equal to its displacement, the charge cloud density must be everywhere
the same. The model therefore does imply something about the interior of the real
ions, but of course the classical picture can at best bear a very crude relationship
to the sophisticated picture drawn in terms of wavefunctions. Nevertheless, there
is some correspondence; in some other contexts the spherical term in the potential
surrounding an ion has been found to be dominant (Fowler & Madden 1985), leading
to the picture of an ion being enclosed in a spherical ‘box’, as suggested by Fowler
& Pyper (1985). More recently Pyper (1995), in presenting improvements relating
to models for fully ionic solid oxides which suppose the environmental energy to be
generated by a shell of charge, takes the wavefunctions of the individual ions to be
spherically symmetrical.

Turning to optical work carried out on single crystals of barium titanate, the
results of the experimental work of Johnston (1971) are well fitted by equations
based on the classical ionic model described above, which implies that the ions have
dipole moments proportional to the fields acting on them. Taking account of the
available evidence, it seems reasonable to suppose that modern descriptions of the
charge distribution within an ion in terms of wavefunctions have sufficient spherical
symmetry for them to predict an ion which carries an induced dipole arising from
a polarizability which is not likely to have a significant variation with applied field.
It follows that it is reasonable to simulate the field created by an ion of the crystal
outside of the volume it occupies by an appropriate point-charge/point-dipole.

However, it must be emphasized that although the point-charge/point-dipole en-
tities of the model are sometimes not explicitly distinguished in the paper from the
ions of the crystal, in that case the distinction is always implicit. The model ions
simply represent the crystal ions, and the closeness with which some of their at-
tributes are similar determines the validity of the transfer of results pertaining to
the ions of the model to the ions of the crystal. In interpreting the results of the
analysis of this paper, it should be borne in mind that even if they are correct for
the model, they might not be correct for the crystal because of some deficiency in
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the representation of the ions of the crystal by the point-charge/point-dipoles of the
model, e.g. if the field of the real ions could only be simulated by an appropriate
multipole. Nevertheless, the indications are that within its limitations, the model has
sufficient correspondence with reality to have made its examination worthwhile.

(b ) Approximations made in the analysis
The Lorentz formula relates to the cubic lattice, but it was nevertheless applied

to the tetragonal lattice of barium titanate. This will result in a small error, which
a rough estimate indicates will lead to an overestimate of Pq, and an underestimate
of Pe, by about 1% in each case; the application of this correction would make the
values of Pq and Pe virtually identical. Estimates have not been made of the errors
due to this cause in other calculated quantities, but a slight underestimation of A3
and a slight overestimation of A4 might be expected.

For the Lorentz formula to hold, the dipoles should be point dipoles, i.e. their
length should be negligible in comparison with the length of the unit cube edge.
That will certainly be so for the electronic dipoles, which are extremely short. The
length of the notional dipoles depends on which ion is providing the reference frame,
but as can be seen from table 1, the longest dipole results when the Ti or the Oa

ion provides the reference frame, so that the length of the longest notional dipole is
0.1552 × 10−10, which is about 3.9% of the length of the cube edge. That is rather
long for a point-dipole, but if the notional dipole were considered to be made up
of a series of dipoles of infinitesimal length, to each of which a reasonable value for
the S factor could be assigned having regard to its variation with position along the
cube edge, then an estimate of the resulting error would be obtained. That has not
been done, but if the S value were to drop linearly between the points Ev and L of
table 3, the field produced at the fixed ion at L by the notional dipole at Ev would
be about 1.7% lower than if the nominal dipole had been of negligible length. That
is an exaggerated figure, because the S value is passing through its maximum at
the point Ev, and so its variation over the half-length of the notional dipole will be
much less than if it were dropping linearly with distance. An accurate calculation
could only be carried out when the functional variation of S along the cube edge
were known, but it is reasonably safe to say that no serious error will be introduced
on account of the length of the notional dipole.

Although not strictly speaking an approximation in analysis, any uncertainties in
the initial data will be reflected in the results. The calculations are quite sensitive
to data concerning the positions of, and charges on, the ions. It has been recently
remarked by Pyper (1995) that many solid oxides are fully ionic, having a charge of
−2e on the oxygen ions. That observation did not relate to perovskite crystals, but
the estimate of the charges on the ions of the barium titanate crystal would not have
to be greatly modified for the results of the analysis to be significantly different. It
would not be difficult to take account of input data modifications by means of a new
calculation following the same procedures as those adopted for the present analysis.

(c ) Results of the analysis
The complete results of the analysis are shown in table 8 supplemented by tables 4a

and 5a; part of that information is presented in a different way in tables 9 and 10.
A discussion of these results related to physical quantities of importance in the
description of the crystal now follows.
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(i) Concerning polarization
The total dipole moment per unit cell µ is given by the sum of µq and µe as

16.6029 × 10−30, and the spontaneous polarization P is given by the sum of Pq
and Pe as 0.2610, which is the observed experimental value. This means that Pq is
about 0.843% below, and Pe is about 0.843% above, one-half of P . If the value of
Pq is decreased and that of Pe increased for any reason by about 1%, e.g. for the
reason given in §11 b, then their values become in practice indistinguishable. Thus
the spontaneous polarization is due virtually in equal measure to ionic and electronic
polarization.

Because of the notional nature of the µqk values of row 3 of table 8, it is not possible
to break down their sum µq into components attributable to particular species of ion;
µq, and so Pq, are properties of the unit cell. However, the µek values of row 8 of
table 8 are real ionic quantities, and from them we can see the relative contributions
made to µe, and so to Pe, by the electronic dipole moment µek of each ion. By far
the greatest contribution is made by the Oa ion; about 72% of µe is due to µe3. The
next largest contribution is made by the Ti ion; about 11% of µe is due to µe2. Those
figures show the important part played by the electronic dipole moment of the Oa

ion, which is responsible for about 72% of the electronic polarization Pe, i.e. about
36% of the total spontaneous polarization P .

(ii) Concerning fields
The fields Eqjk caused at the kth ions by the charges of all of the jth ions are

shown in table 4a. The largest is the field caused at the Oa ions by the charges of
the Ti ions, greater by a factor of 1.77 than the next largest, the field caused at the
Ti ions by the charges of the Oa ions. When all the fields at each kth ion caused by
the charges of all other ions are added to give Eqk, the field at the Oa ions is the
largest, greater by a factor of 3.26 than the next largest, the field at the Ti ions. The
zeros indicate that the charges of any given species of ion can not create a field at
their own lattice points. This matter was discussed in §3 b.

The fields Eejk caused at each kth ion by the electronic dipoles of all of the jth
ions are shown in rows 9 of table 8. By far the largest is the field caused at the Ti
ions by the electronic dipoles of the Oa ions, greater by a factor of 4.02 than the
next largest, the field caused at the Ob ions by the electronic dipoles of the Oa ions.
When all the fields at any kth ion caused by the electronic dipoles of all other ions
are added to give Eek as shown in row 10 of table 8, the field at the Ti ions is the
largest, greater by a factor of 3.10 than the next largest, the field at the Oa ions. In
contrast to the charges, the dipoles of any given species of ion do create a field at
their own lattice points, in accordance with the Lorentz formula.

When the fields Eqjk and Eejk are added to give the total field Ejk at each of the
kth ions caused by the charges and electronic dipoles of all of the jth ions, the results
are as shown in table 9. The largest is the field caused at the Ti ions by the Oa ions,
greater by a factor of 1.23 than the next largest, the field caused at the Oa ions by
the Ti ions. When all the fields at any kth ion caused by the charges and electronic
dipoles of all other ions are added to give Ek, the field at the Oa ion is the largest,
but only greater by a factor of 1.06 than the next largest, the field at the Ti ion. The
total field at each Ti ion is reduced below that at each Oa ion because the negative
field caused by the Ob ions is 9.28 times greater at the Ti ions than it is at the Oa

ions. The Ek fields at the Ba and Ob ions are relatively small (see row 6 of table 8).

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


38 J. H. Calderwood

That is because for both of these ions, the Eqk and Eek fields are in opposition to
each other (see rows 4 and 10 of table 8).

(iii) Concerning forces
The forces Fqjk on the charge of each kth ion caused by the fields Eqjk of the

charges of all of the jth ions are shown in table 5a. Newton’s Third Law leads to
the expectation that Fqjk and Fqkj should be equal and opposite. That expectation
is fulfilled, as is evident from the figures shown in table 5a. Those figures were each
given independently by the product qkEqjk with terms taken from row 1 of table 8
and from table 4a respectively, and not obtained by the use of Newton’s Law, which
therefore serves as a check on the accuracy of the calculations. It was the failure
to comply with that law which led in §3 c to the rejection of table 5b based on the
conventional assumption that the barium ion was undisplaced, and the consequent
derivation in §4 a of a compensation factor which was applied in §4 b to the figures
of table 5b which turned them into the figures of table 5a, thus demonstrating that
the fixed-frame of reference calculation becomes valid for force calculations if the
compensation factor is used.

The figures of table 5a show that the largest force Fqjk is that on the charge of
each Ti ion caused by the charges of all Oa ions, and vice versa, greater by a factor
of 4.22 than the next largest, the corresponding force relating to the Ti ions and the
Ob ions. When all of the forces on the charges of any kth ion caused by the charges
of all other ions are added to give Fqk, the largest is the downward force on each Oa

ion, greater by a factor of 1.84 than the upward force on each Ti ion.
The force Fejk is given by the sum of the forces caused by the dipole field of all

of the jth ions acting on the charge qk of any kth ion, and of the forces caused by
the charge field of all of the jth ions acting on the charges of the dipole µek of any
kth ion. From the analysis of §4 a, we know that Fejk is given by the product of the
ionic charge qk and the force-field Ecejk, values for which are given in row 1 and row
12 respectively of table 8; rows 14 contain the resulting Fejk values. Again it is to be
expected that Newton’s Third Law will be satisfied, and inspection of the figures in
row 14 of table 8 shows that that is so, and for all values of j and k, Fejk and Fekj
are equal and opposite. These figures were obtained by purely electrostatic analysis,
and therefore the fact that they are in accordance with Newton’s Law provides a
check on their validity.

The figures show that the largest force Fejk is that on the charge and dipole of
each Ti ion caused by the charges and dipoles of all of the Oa ions, and vice versa,
greater by a factor of 8.51 than the next largest, the corresponding force relating to
the Oa ions and the Ob ions. When all of the forces on the charges and dipoles of any
kth ion caused by the dipoles and charges respectively of all other ions are added to
give Fek, the largest is the upward force on each Ti ion, greater by a factor of 1.32
than the downward force on each Oa ion.

When the forces Fqjk and Fejk are added to give the total electrostatic force Fjk
caused by all of the jth ions on each kth ion, the results are those shown in table 10.
The largest force is that caused by all of the Ti ions on each Oa ion, and vice versa,
greater by a factor of 8.13 than the next largest, the corresponding force relating to
the Ti and Ob ions. When all of the electrostatic forces on any kth ion caused by all
other ions are added to give Fk, the largest is the downward force on the Oa ions,
only slightly greater by a factor of 1.03 than the upward force on the Ti ions. Of the
upward electrostatic force on the ions of a single unit cell, the force on the Ti ion
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accounts for 96.47% and the force on the Ba ion for 3.53%; of the equal downward
electrostatic force on the ions of the single unit cell, the force on the Oa ion accounts
for 99.38%, and the force on each Ob ion accounts for 0.31%. The forces on the
Ba and Ob ions are small because for both of them, Fqk and Fek, each of which is
comparatively small, oppose each other (see table 8, rows 15 and 16).

These detailed results support the commonly held view that the Ti and Oa ions
play the prevailing part in the determination of the characteristics of the crystal.
The electronic dipole moment µe3 provides about 72% of the electronic polarization
Pe, (table 8, row 8), and the fields E2 and E3 and the forces F2 and F3 are much
greater than the fields and the forces for other k values (see table 8, rows 8 and 17);
the force on each Ti ion caused by all of the Oa ions and vice versa (see table 10)
is more than eight times the corresponding forces involving any other two species of
ions. This means that there is a strong force of compression between each Ti ion and
the Oa ion above it.

Although the electrostatic forces on the ions of the unit cell total to zero, there
is an electrostatic force Fk on each ion as given in row 17 of table 8. Since the ions
are stationary, they each must be acted on by another force −Fk, a balancing force
which is not derivable independently by the use of the model. The balancing force
is really made up of several component forces, not all of which necessarily are in the
opposite direction to the electrostatic forces caused by the charges and dipoles of
the ions represented by the model. These components of the balancing force, which
have been discussed by Fowler & Pyper (1985) and Pyper (1995), include van der
Waals forces, the electrostatic forces caused by the spatial extension of the electron
clouds of neighbouring ions, and the force of repulsion arising from the Pauli principle
because of the overlap of occupied orbitals (Pyper 1986). These forces are probably
in increasing order of magnitude, but the last two have been found to be of about
equal importance for anions in some materials (Fowler & Madden 1984, 1985). It is
outside the scope of the present model to make predictions about these forces, but
it does indicate that they, and any other forces that might be operative, e.g. those
due to covalent bonding, should sum to −Fk on the kth ion. When the necessary
balance of forces can not be maintained, the ions move until they are in new positions
where balance is once more possible. That is to say, there is a transition to another
structure.

(iv) Concerning electronic polarizabilities
The polarizability of an ion is affected by its environment. It is to be expected

that in the confines of a crystal the polarizability of an ion would not be the same
as it would be if it were free. While some light cations are very little affected, anions
are particularly susceptible to their surroundings (Fowler & Madden 1984, 1985).
Those investigators report that the smallest oxide polarizability is 1.87 × 10−40 for
MgO; all other known values are greater than 2.31× 10−40 (Fowler & Pyper 1985).
To turn to compounds having two oxygen ions per formula unit, Fowler et al. (1994)
have reported polarizabilities for the oxygen ions in the group IV oxides to be in the
range 2.45× 10−40 to 2.53× 10−40.

The above polarizability data concerned with formula units having one or two
oxygen ions may be compared with the results of the present work, which is con-
cerned with a material having three oxygen ions in its unit cell; values of electronic
polarizabilities for the Oa and Ob ions were calculated to be about 1.51 × 10−40

and 3.57 × 10−40 respectively. At first sight, these values seem somewhat extreme
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when compared with those quoted for the polarizability of the oxygen ion in other
compounds. However, the total electrostatic force Fk on the Oa ions is 319 times
that on the Ob ions (see table 8, row 17), and since the Fk forces are balanced by
equal and opposite forces, the compressive force on the Oa ion is so much greater
than that on the Ob ion that it is perhaps surprising that the ratio α3/α4 is not less
than 0.424 (see table 8, row 5). An even smaller ratio with correspondingly more
extreme values for α3 and α4 would not have seemed amiss. Furthermore, ab initio
calculations of anion polarizabilities show that they vary strongly from one crystal
to another (Fowler & Pyper 1985).

In that same paper, the in-crystal polarizability of the Ba ion was estimated to
be 10.1 a.u. (i.e. 1.665 × 10−40 F m2), a figure which has been adopted here for the
calculations appearing in §9. In addition, the authors give in their table 1 figures
derived for the total polarizabilities per formula unit relating to a range of ionic
compounds. These include BaO, for which the value shown is 4.6683 Å3 (i.e. 5.194×
10−40 F m2). Subtracting the barium ion polarizability from this yields an oxygen
ion polarizability of about 3.53 × 10−40 F m2. That figure is only about 1% below
the figure of 3.57× 10−40 F m2 derived in this paper for the Ob ions in BaTiO3. This
agreement gives some reassurance that calculated values of oxide polarizabilities may
fall outside the usual range and yet be well grounded. Fowler et al. (1994) have found
that the polarizabilities of the oxygen ions in the group IV dioxides depend on the
closest cation–anion separation, as is the case for the alkali oxides, which have only
one oxygen ion; it may well be that the same separation plays a significant part in
determining the polarizabilities of the Oa and Ob ions in BaTiO3. The calculated
values given above therefore seem to be not unreasonable.

(d ) Interfaces
The electrical characteristics of crystals can be investigated by the use of two kinds

of model. The first kind employs wavefunction descriptions of the ions, and involves
the techniques of quantum chemistry, including relativistic treatments; sometimes
they also draw upon experimental measurements of refractive index. Such treatments
can yield results for the polarizabilities of ions within the crystal, and can predict
some of the forces between ions, predominantly, but not exclusively, those of a short-
range nature.

The second kind of model is of the type analysed in this paper, in which each ion is
represented by a point-charge/point-dipole, and the analysis uses only the methods
of classical electrostatics to predict the polarizabilities of some ions on the basis of the
known polarizabilities of some others, and on the results of laboratory observations
of spontaneous polarization and refractive index. This model can also predict the
electrostatic forces on each ion, which when added to the forces predicted by the
first model, should give the result of zero because each of the ions is in equilibrium.
Thus the calculation of balancing forces by means of the two different models gives
the first interface between them.

Further, it is reasonable to hope that each model should be capable ultimately
of yielding a prediction of the in-crystal polarizability of each ion. That would only
be possible for the second model if at least two further experimentally measurable
properties of the crystal could be expressed functionally in terms of the electronic
polarizabilities of the ions. Then a procedure could be adopted, similar to that already
described in relation to spontaneous polarization and refractive index, resulting in
additional equations to be satisfied by the electronic polarizabilities of the ions. So far
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the only in-crystal polarizability relating to the ions of the BaTiO3 crystal yielded
by the first type of model is that for the Ba ion (Fowler & Pyper 1985), already
adopted for this paper. Thus the calculation of electronic polarizabilities provides
the second interface between the models.

It is evidently not possible to obtain a complete electrical description of the crystal
by the use of either the wavefunction model or the point-charge/point-dipole model
alone. They describe different aspects of reality each within the boundaries of its
own potentialities, and if they were to be developed until their predictions could be
brought together so as to fit without dislocation at the interfaces, then we should
have a theory of the crystal.
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